Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression.

J Appl Microbiol

Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

Published: January 2011

Aims: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations.

Methods And Results: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5-thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high-affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose-grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose.

Conclusion: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways.

Significance And Impact Of The Study: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2672.2010.04895.xDOI Listing

Publication Analysis

Top Keywords

maltose utilization
8
severe deregulation
8
hxt gene
8
gene expression
8
cerevisiae strain
8
glucose transport
8
glucose
7
mutant
7
derepression baker's
4
baker's yeast
4

Similar Publications

AntiT2DMP-Pred: Leveraging feature fusion and optimization for superior machine learning prediction of type 2 diabetes mellitus.

Methods

January 2025

Department of Physiology, Ajou University School of Medicine, Suwon 16499 Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499 Republic of Korea. Electronic address:

Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Synthetic inhibitors of carbohydrate-digesting enzymes are used to manage T2DM but may harm organ function over time. Bioactive peptides offer a safer alternative, avoiding such adverse effects.

View Article and Find Full Text PDF

Unlocking the potential of β-limit dextrin: Preparation, structure, properties, and promising applications.

Carbohydr Polym

March 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China. Electronic address:

Article Synopsis
  • Starch has important industrial uses, but its performance is limited by issues like retrogradation and fast digestion.
  • By hydrolyzing native starch with β-amylase, β-limit dextrin (β-LD) and maltose are produced, with β-LD having a stable structure that helps avoid retrogradation and enhances solubility.
  • The review discusses ways to improve the production of β-LD, explore its additional benefits, and expand its applications in food and pharmaceuticals, offering valuable insights for its commercial use.
View Article and Find Full Text PDF

The Discovery of Novel ER-Localized Cellobiose Transporters Involved in Cellulase Biosynthesis in Trichoderma reesei.

J Basic Microbiol

December 2024

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Sugar transporters are of great importance in sensing and transporting varied sugars for cellulase biosynthesis of lignocellulolytic fungi. Nevertheless, the function and the relevant mechanism of sugar transporters in fungal cellulase biosynthesis remain to be explored. Here, putative maltose transporters Mal1, Mal2, Mal3, Mal4, and Mal5 in Trichoderma reesei were investigated.

View Article and Find Full Text PDF

Identification of the saccharifying microbiota based on the absolute quantitative analysis in the batch solid-state fermentation system.

Int J Food Microbiol

December 2024

Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

The fermentation process of Chinese baijiu, a distinctive example of batch solid-state fermentation (BSSF), involves the recurrent use of the same raw material to optimize starch utilization. However, it is unclear which microorganisms are able to metabolize low concentration starch effectively. In this study, we successfully identified the key saccharifying microbiota that degraded low-concentration starch in the BSSF system by absolute quantification techniques.

View Article and Find Full Text PDF

Biosynthesis of Bacteriochlorophylls and Bacteriochlorophyllides in Escherichia coli.

Biotechnol Bioeng

December 2024

Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!