The purpose of this study was to determine if implantation of autologous bone-marrow-derived cells has the potential to treat stress urinary incontinence caused by intrinsic sphincter deficiency. Bone marrow cells harvested from femurs of New Zealand White rabbits were cultured for 10 days. Seven days before implantation, the urethral sphincters located at the internal urethral orifice were cryo-injured by spraying liquid nitrogen for 15 s. The cultured autologous bone-marrow-derived cells were implanted 7 days after cryo-injury. For controls, cell-free solutions were injected. At 7 and 14 days after implantation, leak point pressures were determined and the urethral sphincters were examined by immunohistochemistry. At 7 and 14 days, the cell-implanted regions contained numerous striated and smooth muscle-like cells expressing myoglobin and smooth muscle actin, respectively. The proportions of myoglobin- and smooth muscle actin-expressing areas in both the 7- and 14-day cell-implanted regions were significantly higher than in controls. By 14 days, these differentiated cells formed contacts with similar cells, creating layered muscle structures. At that time, the leak point pressure of the cell-implanted rabbits was significantly higher than that of the controls. In conclusion, autologous bone-marrow-derived cells can reconstruct functional urethral sphincters.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2010.0478DOI Listing

Publication Analysis

Top Keywords

autologous bone-marrow-derived
16
bone-marrow-derived cells
16
urethral sphincters
16
implantation autologous
8
cells
8
functional urethral
8
days implantation
8
leak point
8
cell-implanted regions
8
smooth muscle
8

Similar Publications

Clinical state and future directions of stem cell therapy in stroke rehabilitation.

Exp Neurol

December 2024

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:

Despite substantial advances in the acute management of stroke, it remains a leading cause of adult disability and mortality worldwide. Currently, the reperfusion modalities thrombolysis and thrombectomy benefit only a fraction of patients in the hyperacute phase of ischemic stroke. Thus, with the exception of vagal nerve stimulation combined with intensive physical therapy, there are no approved neuroprotective/neurorestorative therapies for stroke survivors.

View Article and Find Full Text PDF

Background & objectives Our study aims to provide the diversity of stem cell use for non-malignant, non-haematological diseases in India through the lens of clinical trials. Methods A PRISMA approach was used to evaluate the safety and efficacy of stem cell use for the period 2001-2021 in India. The outcomes were measured using each disease category, types of stem cells, the origin of stem cells, safety, and efficacy.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

Objective: To investigate the efficacy of intrathecal combined administration of autologous bone marrow-derived mesenchymal stem cells (BMSCs) and Schwann cells (SCs) in urinary function improvement in complete spinal cord injury (SCI) patients for the first time.

Methods: This study was a randomized phase II clinical trial, including treatment and control arms. Patients with traumatic complete SCI-induced neurogenic bladder were included.

View Article and Find Full Text PDF

Objective: To review the various basic research and treatments available to regenerate the vocal folds and to discuss the direction for future treatments.

Methods: A comprehensive review was performed in PubMed database and Google Scholar utilizing search terms including combinations and variations of the following concepts: vocal fold anatomy, vocal fold disorders, and regenerative therapies. No particular inclusion or exclusion criteria were set due to the nature of this narrative review article.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!