A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction. | LitMetric

Reaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R-26 exhibit changes in the recombination kinetics of the charge-separated radical-pair state, P(·+) Q(A)(·-), composed of the dimeric bacteriochlorophyll donor P and the ubiquinone-10 acceptor Q(A), depending on whether the RCs are cooled to cryogenic temperatures in the dark or under continuous illumination (Kleinfeld et al. Biochemistry 1984, 23, 5780-5786). Structural changes near redox-active cofactors have been postulated to be responsible for these changes in kinetics and to occur in the course of light-induced oxidation and reduction of the cofactors thereby assuring a high quantum yield. Here we investigated such potential light-induced structural changes, associated with the formation of P(·+) Q(A)(·-), via pulsed electron-nuclear double resonance (ENDOR) at Q-band (34 GHz) and pulsed electron-electron double resonance (PELDOR) at W-band (95 GHz). Two types of light excitation have been employed for which identical RC samples were prepared: (a) one sample was frozen in the dark and then illuminated to generate transient P(·+) Q(A)(·-), and (b) one was frozen under illumination which resulted in both trapped and transient P(·+) Q(A)(·-) at 80 K. The hyperfine interactions between Q(A)(·-) and the protein were found to be the same in RCs frozen in the dark as in RCs frozen under illumination. Furthermore, these interactions are completely consistent with those observed in RC crystals frozen in the dark. Thus, QA remains in its binding site with the same position and orientation upon reduction. This conclusion is consistent with the result of our orientation-resolving PELDOR experiments on transient P(·+) Q(A)(·-) radical pairs. However, these findings are incompatible with the recently proposed ~60° reorientation of Q(A) upon its photoreduction, as deduced from an analysis of Q-band quantum-beat oscillations (Heinen et al. J. Am. Chem. Soc. 2007, 129, 15935-15946). Such a large reorientation appears improbable, and our objections against this proposition are substantiated here in detail. Our results show that Q(A) is initially in an orientation that is favorable for its light-driven reduction. This diminishes the reorganization requirements for fast electron reduction and high quantum efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp107051rDOI Listing

Publication Analysis

Top Keywords

p·+ qa·-
20
double resonance
12
frozen dark
12
transient p·+
12
electron-electron double
8
reaction centers
8
rhodobacter sphaeroides
8
structural changes
8
high quantum
8
frozen illumination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!