A new diffusive gradients in a thin film (DGT) technique for measuring dissolved reactive phosphorus (DRP) in fresh and marine waters is reported. The new method, which uses a commercially available titanium dioxide based adsorbent (Metsorb), was evaluated and compared to the well-established ferrihydrite-DGT method (ferrihydrite cast within the polyacrylamide gel). DGT time-series experiments showed that the mass of DRP accumulated by Metsorb and ferrihydrite was linear with time when deployed in simple solutions. Both DGT methods showed predictable uptake across the pH (4.0-8.3) and ionic strength (0.0001-1 mol L(-1) NaNO(3)) ranges investigated, and the total capacity of the Metsorb binding phase (∼40,000 ng P) was 2.5-5 times higher than the reported total capacity of the ferrihydrite binding phase. The measurement of DRP in synthetic freshwater and synthetic seawater by Metsorb-DGT over a 4 day deployment period showed excellent agreement with the concentration of DRP measured directly in solution, whereas the ferrihydrite-DGT method significantly underestimated (23-30%) the DRP concentration in synthetic seawater for deployment times of two days or more. Field deployments of Metsorb-DGT samplers with various diffusive layer thicknesses allowed accurate measurement of both the diffusive boundary layer thickness and DRP concentration in situ. The Metsorb-DGT method performs similarly to ferrihydrite-DGT for freshwater measurements but is shown to be more accurate than the ferrihydrite method for determining DRP in seawater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es1027713DOI Listing

Publication Analysis

Top Keywords

dgt technique
8
dissolved reactive
8
reactive phosphorus
8
fresh marine
8
marine waters
8
ferrihydrite-dgt method
8
total capacity
8
binding phase
8
synthetic seawater
8
drp concentration
8

Similar Publications

Phases partitioning and occurrence forms of arsenic, chromium, and vanadium in a tidal reach of the Pearl River estuary, South China.

Environ Pollut

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Migration characteristics and occurrence forms of redox-sensitive metal(loid)s such as arsenic (As), chromium (Cr), and vanadium (V) remained unclear in dynamic estuarine waters. In this work, size fractionation and chemical speciation of As, Cr, and V in the Jiaomen Waterway (JMW), a tidal river of the Pearl River estuary, were explored based on (ultra)filtration, the diffusive gradients in thin films (DGT) techniques and a thermodynamic chemical equilibrium model. The results showed that As was present mainly in soluble forms in the river water, and the suspended particulate matter (SPM) was identified the major carrier for Cr.

View Article and Find Full Text PDF

Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.

View Article and Find Full Text PDF

Gas transport mechanisms during high-frequency ventilation.

Respir Res

December 2024

Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, Australia.

By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!