It has long been postulated that rare tautomeric or ionized forms of nucleic acid bases may play a role in mispair formation. Therefore, ab initio quantum chemical investigations on the tautomeric equilibrium in 5-fluorouracil (5FU) and its anions (deprotonated from N1, AN1, and from N3, AN3) and their tautomeric forms in water were performed. The effect of the water as solvent was introduced using solute-solvent clusters (four water molecules). The influence of the water molecules on the tautomeric reactions between different forms was considered by multiple proton transfer mechanisms. We show that when a water dimer is located in the reaction site between the two pairs of N-H and C═O groups, the assistive effect of the water molecules is strengthened. All calculations of the solute-water complexes were carried out at an MP2 level of theory and supplemented with correction for higher order correlation terms at CCSD(T) level, using the 6-31+G(d,p) basis set. The ab initio calculated frequencies and Raman intensities of 5FU and its anions AN1, AN3, and dianion are in good agreement with the experimental Raman frequencies in aqueous solution at different pH. In order to establish the pH-induced structural transformation in the molecule of 5FU, further (1)H, (19)F, and (13)C NMR spectra in water solution for pH = 6.9-13.8 were acquired and the chemical shift alterations were determined as a function of pH. On the basis of NMR spectroscopic data obtained for 5FU in aqueous solution at alkaline pH, we suggest the existence of a mixture of the anionic tautomeric forms predicted by our theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp1063879 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!