Enhancement of ammonia dehydrogenation by introduction of oxygen onto cobalt and iron cluster cations.

J Phys Chem A

East Tokyo Laboratory, Genesis Research Institute, Inc., 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan.

Published: December 2010

Reactions of oxygen-chemisorbed cobalt and iron cluster cations (Co(n)O(m)(+) and Fe(n)O(m)(+); n = 3-6, m = 1-3) with an NH(3) molecule have been investigated in comparison with their bare metal cluster cations at a collision energy of 0.2 eV by use of a guided ion beam tandem mass spectrometer. We have observed three kinds of reaction products, which come from NH(3) chemisorption with and without release of a metal atom from the cluster and dehydrogenation of the chemisorbed NH(3). Reaction cross sections and branching fractions are strongly influenced by the number of oxygen atoms introduced onto the metal clusters. Oxygen-chemisorbed metal clusters with particular compositions such as Co(4)O(+), Co(5)O(2)(+), and Fe(5)O(2)(+) are extremely reactive for NH(3) dehydrogenation, whereas Co(4)O(2)(+) and Fe(4)O(2)(+) exhibit high reactivity for NH(3) chemisorption with metal release. The enhancement of dehydrogenation for specific compositions can be interpreted in terms of competition between O-H and neighboring Co-H (or Fe-H) formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp109118dDOI Listing

Publication Analysis

Top Keywords

cluster cations
12
cobalt iron
8
iron cluster
8
nh3 chemisorption
8
metal clusters
8
nh3
5
metal
5
enhancement ammonia
4
dehydrogenation
4
ammonia dehydrogenation
4

Similar Publications

In this study, the homogeneous carboxylation of potassium, sodium, and lithium phenolates in DMSO solution at 100 °C by the Kolbe-Schmitt reaction was investigated. The impact of water, phenolate concentration, and cation nature on the yield of products and reaction selectivity was demonstrated. Based on the patterns observed, it was concluded that a complex cluster mechanism governs the carboxylation reaction in the solution.

View Article and Find Full Text PDF

Selective gold extraction from e-waste leachate via sulfur-redox mechanisms using sulfhydryl-functionalized MOFs.

Water Res

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:

Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.

View Article and Find Full Text PDF

Development of Synthetic Antimicrobial Peptides Based on Genomic Analysis of Streptococcus salivarius.

J Clin Lab Anal

January 2025

Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Background: In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides.

Methods: Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz.

View Article and Find Full Text PDF

Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.

View Article and Find Full Text PDF

Completely Multipolar Model for Many-Body Water-Ion and Ion-Ion Interactions.

J Phys Chem Lett

January 2025

Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.

This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!