AI Article Synopsis

  • Researchers developed new quercetin derivatives by blocking its unstable hydroxyl groups with a promotional chemical (POM) to create two stable forms (7-O-POM-Q and 3-O-POM-Q).
  • These modified forms showed significantly longer stability in cell culture media, with a half-life of up to 52 hours, compared to the original quercetin which lasted less than 30 minutes.
  • While one of the conjugates effectively entered cells and maintained quercetin levels for 12 hours, it still needs improvement for better cell membrane penetration, suggesting more studies on different modifications are needed.

Article Abstract

In order to increase stability of quercetin, its metabolically and chemically susceptible hydroxyl groups 7-OH and 3-OH respectively were transiently blocked with a pivaloxymethyl (POM) promoiety to provide two novel quercetin conjugates [7-O-POM-Q, 3-O-POM-Q]. In the absence of stabilizer (ascorbic acid), the synthesized conjugates showed significantly increased stability in cell culture media [t(½) = 4 h, 52 h] compared with quercetin (t(½) < 30 min) and quercetin prodrug 1 (t(½) = 0.8 h). In addition, the quercetin conjugate 2 underwent efficient cellular uptake and intracellular levels of its hydrolysis product, quercetin, were maintained up to 12 h. Stability and intracellular accumulation of were demonstrated by its stabilizer-independent cytostatic effect and induction of apoptotic cell death. Even though was more stable than, it failed to penetrate cell membranes. However, the remarkable stability of warrants further investigation of quercetin conjugates with various promoieties at the 3-OH position.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm101252mDOI Listing

Publication Analysis

Top Keywords

stability intracellular
8
intracellular accumulation
8
quercetin
8
susceptible hydroxyl
8
hydroxyl groups
8
pivaloxymethyl pom
8
pom promoiety
8
quercetin conjugates
8
enhanced stability
4
accumulation quercetin
4

Similar Publications

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

RNA binding protein ALYREF regulates ferroptosis to facilitate LUAD growth and metastasis via promoting SLC7A11 mRNA stability.

Sci Rep

January 2025

Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.

Ferroptosis is of great significance in carcinogenesis as it interconnects with a multiplicity of biological processes. Meanwhile, its function and regulatory role in lung cancer remains ambiguous. In this study, we discovered by WB and IHC that ALYREF has a higher expression in lung adenocarcinoma (LUAD) tissues compared with normal ones.

View Article and Find Full Text PDF

The influence of temperature induced changes in the composition of MFGM on membrane phase transition and nanomechanical properties.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:

Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.

View Article and Find Full Text PDF

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Integration of EMAP-II-targeted anti-angiogenesis and photodynamic therapy using zinc phthalocyanine nanosystem for enhanced cancer treatment.

Colloids Surf B Biointerfaces

January 2025

College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian 350116, China. Electronic address:

Angiogenesis provides essential nutrients and oxygen to tumors during tumorigenesis, facilitating invasion and metastasis. Consequently, inhibiting tumor angiogenesis is an established strategy in anti-cancer therapy. In this study, we engineered a dual-function nanosystem with both antiangiogenic and photodynamic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!