The study was undertaken to evaluate the efficacy of multivitamin and micronutrient supplementation in azoospermic patients with maturation arrest. A total of 35 azoospermic patients showing maturation arrest on testicular biopsy were recruited in this study. The patients were divided into two groups. Untreated group (n=11) without any treatment and treated group (n=24) who received multivitamins, micronutrients and co-enzyme Q10. The sperm concentration, motility and morphology were evaluated at monthly interval. The results showed reduction in liquefaction time and relative viscosity of the semen in the treated group. Further, in treated group there was appearance of spermatozoa (4.0 million/ml) exhibiting progressive motility (7%) and normal morphology (6%), even in the first follow up visit. The sperm count, motility and normal morphology increased significantly on subsequent visits. Within 3 months (3 visits) 2 pregnancies were reported. These observations indicate that multivitamin and micronutrient supplementation improve the qualitative and quantitative parameters of seminogram in patients with azoospermia of maturation arrest.
Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFF S Sci
January 2025
Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:
This study investigated whether luteinizing hormone receptor (LHR) expression varies in the granulosa cells of individual follicles according to the maturation stage of the oocytes harvested for assisted reproductive technology (ART) treatment. We observed minimal to no LHR mRNA and protein expression in cumulus cells surrounding oocytes arrested in the germinal vesicle (GV) stage. Interestingly, their ability to mature was confirmed by rescue in vitro maturation, suggesting somatic cell LHR deficiency as a key factor for the retrieval of GV oocytes in ART procedures.
View Article and Find Full Text PDFExp Neurol
December 2024
School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China. Electronic address:
Various factors and mechanisms, including radiation, initiate cellular senescence and are concurrent with the progression of various neurodegenerative diseases. Radiation-induced chromosomal aberrations and DNA integrity damage impact the processes of cellular growth, maturation, and aging. Astragaloside IV (AS-IV) has been documented to display significant neuroprotective effects on inflammation, oxidative stress, and cellular apoptosis; however, the precise neuroprotective mechanism of AS-IV against neuronal aging remains unclear.
View Article and Find Full Text PDFGlia
January 2025
Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown.
View Article and Find Full Text PDFCell Biosci
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.
Results: This study uncovers three novel mutations (c.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!