[Study on gfp labeling of a 2,4-D degrading strain and its detection in a wastewater biotreatment system].

Huan Jing Ke Xue

State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.

Published: August 2010

A 2,4-dichlorophenoxyacetic acid (2,4-D) degrading special bacteria Achromobacter sp. was chromosomally labeled with a green fluorescent protein gene (gfp) using a mini-Tn7 transposon delivery system. The growth status, fluorescence expression and degradation ability of the strain before and after labeling were compared. Methods to quantify the strain in different biotreatment systems (activated sludge or granular sludge system) after inoculation were also investigated. Results showed that the labeled Achromobacter sp. and its control strain demonstrated a similar growth pattern and 2,4-D degradation ability: both of them could completely remove 2, 4-D of about 100 mg/L within 103-112 h. The labeled strain could express fluorescence stably during the course of growth and degradation with fluorescence intensity/D600 stabilized at about 4500. For an activated sludge system bioaugmented with this labeled strain, its abundance could determined through direct measuring fluorescence emitted by the sludge mixture, for it was linearly associated to the percentage of the strain in the range of 0-75% (R2 = 0.9952). For a granular sludge system bioaugmented with this strain, fluorescence of the sludge mixture could be measured after homogenous pretreatment, and the percentage of the strain in the range of 0-42% was also linearly related to the fluorescence intensity emitted by the sludge mixture (R2 = 0.9801). Overall, this gfp labeling method based on Tn7 delivery system can be used to monitor specific bacteria in a biotreatment system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sludge system
12
sludge mixture
12
strain
9
gfp labeling
8
24-d degrading
8
delivery system
8
degradation ability
8
activated sludge
8
granular sludge
8
labeled strain
8

Similar Publications

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

Design of S-Scheme CuInS/CeO Heterojunction for Enhanced Photocatalytic Degradation of Pharmaceuticals in Wastewater.

Langmuir

January 2025

Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.

The release of common medications and illegal drugs into the environment could be potentially harmful to the ecosystem and hamper the behavior and growth of plants and animals. These pollutants gain access to water through sewage and factory discharges and have been found to exceed safety limits in water bodies. Therefore, there is an urgent need for improved wastewater purification systems.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!