AI Article Synopsis

  • A study in Quzhou County, Hebei Province examined the effects of intensive farming practices on soil organic carbon (SOC) properties using isotope carbon analysis.
  • Findings showed that converting grassland to farmland resulted in a significant SOC reduction of 13.3%-35% over 34 years, primarily within the top 40 cm of soil.
  • Fertilization and no-tillage methods were found to improve SOC levels, with no-tillage being particularly effective in the 0-10 cm layer.

Article Abstract

In Quzhou County, Hebei Province where now intensive farming system is operated, original grassland and farming land under different tillage, crop straw return and fertilization measures were studied using isotope carbon for the analysis of the impact on soil organic carbon (SOC) properties. The research indicated that after change into farmland (34 years), SOC is significantly reduced and for 1 m of soil layer, the scope of reduction is from 13.3%-35% and this decrease happens in 0-40 cm of soil layer. After 8 years of fertilization, SOC can be increased at 0.83 g x kg(-1). No-tillage can significantly increase the SOC especially in 0-10 cm but plough will increase the SOC at 10-15 cm and 15-20 cm. Change of delta13 C of SOC due to land use change mainly happens in 0-20 cm, where input of organic materials from maize stored. In soil layer of 0-5 cm, only maximum 18% of SOC is from crop residues and in 15-20 cm, this percentage is about 5%.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil layer
12
land change
8
soil organic
8
organic carbon
8
soc
8
carbon soc
8
increase soc
8
soil
5
[impact land
4
change
4

Similar Publications

Land resources are vital for urban development and construction. Abandoned industrial areas often contain large amounts of heavy metals from past industrial activities. Accurate knowledge of soil pollutant content and spatial distribution is crucial to avoid health risks and achieve sustainable soil use.

View Article and Find Full Text PDF

Large emissions of CO and CH due to active-layer warming in Arctic tundra.

Nat Commun

January 2025

Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.

Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.

View Article and Find Full Text PDF

Increasing soil organic carbon (SOC) in agricultural systems is a primary nature-based option for mitigating climate change, improving soil fertility, and ensuring food security. However, the consequences of global warming and increases in carbon inputs on cropland SOC stocks over the last few decades remain largely unknown, particularly in deeper soil layers. Here, by using repeated measurements, we reassess variations in SOC stocks across a 0 to 100 cm soil profile at the same locations in China's upland croplands in 1980 and 2023.

View Article and Find Full Text PDF

Petrological controls on the engineering properties of carbonate aggregates through a machine learning approach.

Sci Rep

December 2024

Department of Historical Geology-Paleontology, Faculty of Geology and Geoenvironment, School of Earth Sciences, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, Zografou, Greece.

Rock aggregates have been extensively exploited in the construction sector, and the associated engineering features play a critical role in their application. The main aim of this research is to assess the impact of petrographic characteristics on the engineering properties of carbonate rocks. A total of 45 carbonate rock samples from different geological formations within the Salt Range (Western Himalayan Ranges, Pakistan) were subjected to comprehensive petrographic analyses and standard aggregate quality control tests.

View Article and Find Full Text PDF

Exploring the components of soil organic carbon (SOC) and aggregate stability across different elevations is crucial to assessing the stability of SOC in subtropical forest ecosystems under climate change. In this study, we investigated the spatial variation of active carbon (C) compositions, aggregate distribution, and stability in Chinese fir (Cunninghamia lanceolata) plantations across an elevation gradient from 750 to 1150 m a.s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!