We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970109 | PMC |
http://dx.doi.org/10.1007/s10545-010-9246-8 | DOI Listing |
Int J Neonatal Screen
December 2024
Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany.
Glutaric aciduria type 1 (GA1) is a rare inherited metabolic disease increasingly included in newborn screening (NBS) programs worldwide. Because of the broad biochemical spectrum of individuals with GA1 and the lack of reliable second-tier strategies, NBS for GA1 is still confronted with a high rate of false positives. In this study, we aim to increase the specificity of NBS for GA1 and, hence, to reduce the rate of false positives through machine learning methods.
View Article and Find Full Text PDFNeurol India
November 2024
Department of Neurology, Ramaiah Medical College, Bengaluru, Karnataka, India.
Cell Rep
December 2024
Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada. Electronic address:
Lysine metabolism converges at α-aminoadipic semialdehyde dehydrogenase (ALDH7A1). Rare loss-of-function mutations in ALDH7A1 cause a toxic accumulation of lysine catabolites, including piperideine-6-carboxylate (P6C), that are thought to cause fatal seizures in children unless strictly managed with dietary lysine reduction. In this study, we perform metabolomics and expression analysis of tissues from Aldh7a1-deficient mice, which reveal tissue-specific differences in lysine metabolism and other metabolic pathways.
View Article and Find Full Text PDFEur J Pediatr
December 2024
Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey.
Unlabelled: Glutaric aciduria type 1 (GA1) is a rare metabolic disorder characterized by a deficiency in the enzyme glutaryl-CoA dehydrogenase. This study aims to present the clinical, biochemical, genetic, and neuroimaging findings of GA1 patients, emphasizing the importance of early detection and the potential benefits of incorporating GA1 into NBS programs. The demographic, clinical, and laboratory findings of GA1 patients were reviewed retrospectively.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil. Electronic address:
The biochemical hallmark of D-2-hydroxyglutaric aciduria is brain accumulation of D-2-hydroxyglutaric acid (D2HG). Patients present predominantly neurological manifestations, whose pathogenesis is still unknown. Thus, we examined the impact of elevated brain levels of D2HG, induced by intracerebral injection of this metabolite in juvenile rats, on redox and mitochondrial homeostasis and histochemical landmarks in the cerebral cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!