Genetic dissection of synaptic specificity.

Curr Opin Neurobiol

Department of Biology, Stanford University, Stanford, CA 94305, USA.

Published: February 2011

Nervous systems are built of a myriad of neurons connected by an even larger number of synapses. While it has been long known that neurons specifically select their synaptic partners among many possible choices during development, we only begin to understand how they make those decisions. Recent findings have started to elucidate the molecular mechanisms underlying synaptic target selection including positive as well as negative cues from synaptic partners, intermediate targets and surrounding tissues. Furthermore, emerging evidence suggests that synaptic connections are not only formed among specific sets of neurons, but also targeted to specific subcellular domains. Finally, spatial and temporal transcriptional regulation of these molecular cues represents an additional, versatile mechanism to provide wiring specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168556PMC
http://dx.doi.org/10.1016/j.conb.2010.10.004DOI Listing

Publication Analysis

Top Keywords

synaptic partners
8
synaptic
5
genetic dissection
4
dissection synaptic
4
synaptic specificity
4
specificity nervous
4
nervous systems
4
systems built
4
built myriad
4
myriad neurons
4

Similar Publications

Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.

View Article and Find Full Text PDF

Importance: As an accessible part of the central nervous system, the retina provides a unique window to study pathophysiological mechanisms of brain disorders in humans. Imaging and electrophysiological studies have revealed retinal alterations across several neuropsychiatric and neurological disorders, but it remains largely unclear which specific cell types and biological mechanisms are involved.

Objective: To determine whether specific retinal cell types are affected by genomic risk for neuropsychiatric and neurological disorders and to explore the mechanisms through which genomic risk converges in these cell types.

View Article and Find Full Text PDF

Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin, a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin.

View Article and Find Full Text PDF

Developing populations of connected neurons often share spatial and/or temporal features that anticipate their assembly. A unifying spatiotemporal motif might link sensory, central, and motor populations that comprise an entire circuit. In the sensorimotor reflex circuit that stabilizes vertebrate gaze, central and motor partners are paired in time (birthdate) and space (dorso-ventral).

View Article and Find Full Text PDF

The RNA-binding properties of Annexins.

J Mol Biol

January 2025

Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:

Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!