A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-assembled micelles of novel graft amphiphilic copolymers for drug controlled release. | LitMetric

Self-assembled micelles of novel graft amphiphilic copolymers for drug controlled release.

Colloids Surf B Biointerfaces

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, PR China.

Published: June 2011

In this study, with the aim of designing an ideal anticancer drug carrier, we synthesized novel amphiphilic graft copolymers, P(Glu-alt-PEG)-graft-PCLA, based on poly(ethylene glycol) (PEG) segments and glutamic acid (Glu) units as the hydrophilic main chain, and poly(ɛ-caprolactone-co-lactide) (PCLA) as hydrophobic branches. The chemical structure of the copolymers was characterized by (1)H MNR and FT-IR. The self-assembly of the copolymers to form micelles was studied by TEM, DLS and fluorescence spectroscopy. In vitro doxorubicin controlled release studies demonstrated that these graft copolymer micelles had high drug loading capacity and good controlled released properties, demonstrating their potential as a novel anticancer drug carrier. The drug loaded graft copolymer micelles exhibited efficient inhibition of HeLa cells in in vitro studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2010.10.036DOI Listing

Publication Analysis

Top Keywords

controlled release
8
anticancer drug
8
drug carrier
8
graft copolymer
8
copolymer micelles
8
drug
5
self-assembled micelles
4
micelles novel
4
graft
4
novel graft
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!