Marine diatoms have a key role in the global carbon fixation and therefore in the ecosystem. We used Thalassiosira pseudonana as a model organism to assess the effects of exposure to environmental pollutants at the gene expression level. Diatoms were exposed to polycyclic aromatic hydrocarbons mixture (PAH) from surface sediments collected at a highly PAH contaminated area of the Mediterranean Sea (Genoa, Italy), due to intense industrial and harbor activities. The gene expression data for exposure to the sediment-derived PAH mixture was compared with gene expression data for in vitro exposure to specific polycyclic aromatic hydrocarbons. The data shows that genes involved in stress response, silica uptake, and metabolism were regulated both upon exposure to the sediment-derived PAH mixture and to the single component. Complementary monitoring of silica in the diatom cultures provide further evidence of a reduced cellular uptake of silica as an end-point for benzo[a]pyrene exposure that could be linked with the reduced gene and protein expression of the silicon transporter protein. However some genes showed differences in regulation indicating that mixtures of structurally related chemical compounds can elicit a slightly different gene expression response compared to that of a single component. The paper provides indications on the specific pathways affected by PAH exposure and shows that selected genes (silicon transporter, and silaffin 3) involved in silica uptake and metabolism could be suitable molecular biomarkers of exposure to PAHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2010.10.004 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.
Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!