Transplantation of human umbilical cord blood cells (HUCBC) produces reliable behavioral and morphological improvements in animal models of stroke. However, the mechanisms of action still have not been fully elucidated. The aim of the present study is the evaluation of potential neuroprotective effects produced by HUCBC in terms of reduced infarct volume and caspase-3-dependent cell death. Permanent middle cerebral artery occlusion was induced in 90 spontaneously hypertensive rats. The animals were randomly assigned to the control group (n=49) or the verum group (n=41). The cell suspension (8 × 10(6) HUCBC per kilogram bodyweight) or vehicle solution was intravenously administered 24h after stroke onset. Fifty subjects (n=25/25) were sacrificed after 25, 48, 72 and 96h, and brain specimens were removed for immunohistochemistry for MAP2, cleaved caspase-3 (casp3) and GFAP. Another 42 animals (n=26/16) were sacrificed after 0, 6, 24, 36 and 48h and their brains processed for quantitative PCR for casp3 and survivin. The infarct volume remained stable over the entire experimental period. However, cleaved casp3 activity increased significantly in the infarct border zone within the same time frame. Numerous cleaved casp3-positive cells were colocalized with the astrocytic marker GFAP, whereas cleavage of neuronal casp3 was observed rarely. Neither the infarct volume nor casp3 activity was significantly affected by cell transplantation. Delayed systemic transplantation of HUCBC failed to produce neuroprotective effects in a permanent stroke model using premorbid subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2010.11.008DOI Listing

Publication Analysis

Top Keywords

infarct volume
16
human umbilical
8
umbilical cord
8
cord blood
8
volume caspase-3-dependent
8
caspase-3-dependent cell
8
cell death
8
spontaneously hypertensive
8
hypertensive rats
8
neuroprotective effects
8

Similar Publications

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

Selective Fetal Growth Restriction Leading to Cerebral Injury in Monochorionic Twins: A Case Report.

Cureus

December 2024

Neonatology Department, Daniel de Matos Maternity, Coimbra Local Health Unit, Coimbra, PRT.

Monochorionic twin pregnancies carry a risk of perinatal complications due to shared placental anastomoses, which can cause uneven blood distribution and lead to conditions like selective fetal growth restriction (sFGR). This case describes a monochorionic pregnancy complicated by preeclampsia and late-onset sFGR of twin B. Labor was prematurely induced and a 45% weight discordance between the twins was confirmed.

View Article and Find Full Text PDF

Introduction: Pro-arginine vasopressin consists of three peptides: . AVP is released by the neurohypophysis in response to increased plasma osmolality, decreased blood volume and stress. Copeptin has the advantage of being stable ex vivo and easy to measure.

View Article and Find Full Text PDF

Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy.

Neurocrit Care

January 2025

Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.

Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.

View Article and Find Full Text PDF

Background: Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts.

Objectives: The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!