Planck-Benzinger thermal work function: thermodynamic characterization of the carboxy-terminus of p53 peptide fragments.

Protein J

Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA.

Published: November 2010

The thermodynamic parameters for six p53 carboxy-terminus peptide fragments as determined by analytical ultracentrifugal analysis were compared over the experimental temperature range of 275-310 K to evaluate the Gibbs free energy change as a function of temperature, ΔG°(T), from 0 to 400 K using our general linear third-order fitting function, ΔG°(T) = α + βT² + γT³. Data obtained at the typical experimental temperature range are not sufficient to accurately describe the variations observed in the oligomerization of these p53 fragments. It is necessary to determine a number of thermodynamic parameters, all of which can be precisely assessed using this general third-order linear fitting function. These are the heat of reaction, innate temperature-invariant enthalpy, compensatory temperatures and the thermodynamic molecular switch occurring at the thermal set point. This methodology can be used to distinguish the characteristic structure and stability of p53 carboxy-terminal fragments or other p53 mutants. It should be used for the thermodynamic characterization of any interacting biological system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-010-9286-9DOI Listing

Publication Analysis

Top Keywords

thermodynamic characterization
8
peptide fragments
8
thermodynamic parameters
8
experimental temperature
8
temperature range
8
fitting function
8
thermodynamic
5
p53
5
planck-benzinger thermal
4
thermal work
4

Similar Publications

Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.

Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.

View Article and Find Full Text PDF

Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!