Structure-energy relationships for a small group of pyranose and septanose mono-saccharide ligands are developed for binding to Concanavalin A (ConA). The affinity of ConA for methyl "manno"β-septanoside 7 was found to be higher than any of the previously reported mono-septanoside ligands. Isothermal titration calorimetry (ITC) in conjunction with docking simulations and quantum mechanics/molecular mechanics (QM/MM) modeling established the specific role of binding enthalpy in the structure-energy relations of ConA bound to natural mono-saccharides and unnatural mono-septanosides. An important aspect in the differential binding among ligands is the deformation energy required to reorganize internal hydroxyl groups upon binding of the ligand to ConA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0ob00425aDOI Listing

Publication Analysis

Top Keywords

binding concanavalin
8
binding
6
computational experimental
4
experimental investigations
4
investigations mono-septanoside
4
mono-septanoside binding
4
concanavalin correlation
4
correlation ligand
4
ligand stereochemistry
4
stereochemistry enthalpies
4

Similar Publications

Starch-derived hydrophilic malto-oligosaccharides (Glc, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glc-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications.

View Article and Find Full Text PDF

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle.

View Article and Find Full Text PDF

Bacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells.

View Article and Find Full Text PDF

Background: Herbacetin, a flavonol abundant in traditional medicines, is documented as an anti-inflammatory agent. However, information regarding its attributes on lipopolysaccharide (LPS)-induced inflammatory immunopathies has not been delineated yet. The present study aimed to comprehend herbacetin effects on LPS-induced aspects of unwarranted, non-resolving inflammation, particularly via targeting the vicious circle of oxi-inflammatory stress, autophagy-apoptosis, macrophages polarization, impaired inflammasome activation, and inflammatory cascades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!