Background: There is a significant need for affinity reagents with high target affinity/specificity that can be developed rapidly and inexpensively. Existing affinity reagent development approaches, including protein mutagenesis, directed evolution, and fragment-based design utilize large libraries and/or require structural information thereby adding time and expense. Until now, no systematic approach to affinity reagent development existed that could produce nanomolar affinity from small chemically synthesized peptide libraries without the aid of structural information.
Methodology/principal Findings: Based on the principle of additivity, we have developed an algorithm for generating high affinity peptide ligands. In this algorithm, point-variations in a lead sequence are screened and combined in a systematic manner to achieve additive binding energies. To demonstrate this approach, low-affinity lead peptides for multiple protein targets were identified from sparse random sequence space and optimized to high affinity in just two chemical steps. In one example, a TNF-α binding peptide with K(d) = 90 nM and high target specificity was generated. The changes in binding energy associated with each variation were generally additive upon combining variations, validating the basis of the algorithm. Interestingly, cooperativity between point-variations was not observed, and in a few specific cases, combinations were less than energetically additive.
Conclusions/significance: By using this additivity algorithm, peptide ligands with high affinity for protein targets were generated. With this algorithm, one of the highest affinity TNF-α binding peptides reported to date was produced. Most importantly, high affinity was achieved from small, chemically-synthesized libraries without the need for structural information at any time during the process. This is significantly different than protein mutagenesis, directed evolution, or fragment-based design approaches, which rely on large libraries and/or structural guidance. With this algorithm, high affinity/specificity peptide ligands can be developed rapidly, inexpensively, and in an entirely chemical manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978705 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015432 | PLOS |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFBMC Chem
January 2025
Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye.
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!