The genetic model plant Arabidopsis thaliana, like many plant species, experiences a range of edaphic conditions across its natural habitat. Such heterogeneity may drive local adaptation, though the molecular genetic basis remains elusive. Here, we describe a study in which we used genome-wide association mapping, genetic complementation, and gene expression studies to identify cis-regulatory expression level polymorphisms at the AtHKT1;1 locus, encoding a known sodium (Na(+)) transporter, as being a major factor controlling natural variation in leaf Na(+) accumulation capacity across the global A. thaliana population. A weak allele of AtHKT1;1 that drives elevated leaf Na(+) in this population has been previously linked to elevated salinity tolerance. Inspection of the geographical distribution of this allele revealed its significant enrichment in populations associated with the coast and saline soils in Europe. The fixation of this weak AtHKT1;1 allele in these populations is genetic evidence supporting local adaptation to these potentially saline impacted environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978683 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1001193 | DOI Listing |
Plant Cell Rep
January 2025
Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.
A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan.
Organisms adapt to predictable environmental changes via a biological mechanism called priming. Phototropin (phot) is a plant-specific blue light photoreceptor that mediates daily light-induced responses, such as chloroplast relocation, stomatal opening, and phototropism, to optimize photosynthesis. Phot also functions as a thermosensor for chloroplast relocation that may sense daily temperature decreases at night, thereby modulating light-induced responses at dawn; however, this hypothesis has not yet been fully explored.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany.
The plastidial α-glucan phosphorylase (PHS1) can catalyze the elongation and degradation of glucans, but its exact physiological role in plants is not completely deciphered. A plethora of studies have indicated that PHS1 is involved in transitory starch turnover, both in photosynthetic tissues as well as reserve starch accumulation in sink organs of multiple species, by exerting its effects on the plastidial maltodextrin pools. Recent studies have also established its role in the mobilization of short maltooligosaccharides (MOSs), thereby assisting in starch granule initiation.
View Article and Find Full Text PDFMol Plant
January 2025
Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:
Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.
View Article and Find Full Text PDFPlant Commun
January 2025
College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in regulating plant heat stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue light-dependent heat stress response has remained unclear. We found that the blue light receptor cryptochrome 1 (CRY1) negatively regulates heat stress tolerance (thermotolerance) in Arabidopsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!