Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M) protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV) is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4) pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS) and the leucine-rich nuclear export signal (NES) found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors) resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50) of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978725 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1001186 | DOI Listing |
PLoS One
January 2025
Department of Mathematics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
In biology and life sciences, fractal theory and fractional calculus have significant applications in simulating and understanding complex problems. In this paper, a compartmental model employing Caputo-type fractional and fractal-fractional operators is presented to analyze Nipah virus (NiV) dynamics and transmission. Initially, the model includes nine nonlinear ordinary differential equations that consider viral concentration, flying fox, and human populations simultaneously.
View Article and Find Full Text PDFPathology
December 2024
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.
View Article and Find Full Text PDFJ Infect Public Health
December 2024
Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China. Electronic address:
In 2022, Langya henipavirus was identified in patients with fever in eastern China. This study provides an overview of the scientific landscape, highlights research focus areas, and outlines potential future investigations. The relevant scientific literature was systematically searched and reviewed via advanced bibliometric techniques.
View Article and Find Full Text PDFFront Microbiol
December 2024
Maximum Containment Facility, ICMR-National Institute of Virology, Pune, India.
Introduction: India has experienced seven outbreaks of the Nipah virus (NiV) since 2001, primarily occurring in the southern and eastern regions of the country. The southern region has been the main site for these outbreaks. In contrast, the eastern region, which borders Bangladesh, has not reported any outbreaks since 2007.
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
Department of Biotechnology, RV College of Engineering, Bengaluru, India.
The Nipah virus (NiV) is an emerging pathogenic paramyxovirus that causes severe viral infection with a high mortality rate. This study aimed to model the effectual binding of marine sponge-derived natural compounds (MSdNCs) towards RNA-directed RNA polymerase (RdRp) of NiV. Based on the functional relevance, RdRp of NiV was selected as the prospective molecular target and 3D-structure, not available in its native form, was modelled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!