Background: Obesity is associated with inflammation of visceral adipose tissues, which increases the risk for insulin resistance. Animal models suggest that T-lymphocyte infiltration is an important early step, although it is unclear why these cells are attracted. We have recently demonstrated that dietary triglycerides, major components of high fat diets, promote intestinal absorption of a protein antigen (ovalbumin, "OVA"). The antigen was partly transported on chylomicrons, which are prominently cleared in adipose tissues. We hypothesized that intestinally absorbed gut antigens may cause T-lymphocyte associated inflammation in adipose tissue.

Methodology/principal Findings: Triglyceride absorption promoted intestinal absorption of OVA into adipose tissue, in a chylomicron-dependent manner. Absorption tended to be higher in mesenteric than subcutaneous adipose tissue, and was lowest in gonadal tissue. OVA immunoreactivity was detected in stromal vascular cells, including endothelial cells. In OVA-sensitized mice, OVA feeding caused marked accumulation of CD3+ and osteopontin+ cells in mesenteric adipose tissue. The accumulating T-lymphocytes were mainly CD4+. As expected, high-fat (60% kCal) diets promoted mesenteric adipose tissue inflammation compared to low-fat diets (10% Kcal), as reflected by increased expression of osteopontin and interferon-gamma. Immune responses to dietary OVA further increased diet-induced osteopontin and interferon-gamma expression in mesenteric adipose. Inflammatory gene expression in subcutaneous tissue did not respond significantly to OVA or dietary fat content. Lastly, whereas OVA responses did not significantly affect bodyweight or adiposity, they significantly impaired glucose tolerance.

Conclusions/significance: Our results suggest that loss or lack of immunological tolerance to intestinally absorbed T-lymphocyte antigens can contribute to mesenteric adipose tissue inflammation and defective glucose metabolism during high-fat dieting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978720PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013951PLOS

Publication Analysis

Top Keywords

adipose tissue
24
mesenteric adipose
16
intestinally absorbed
12
tissue inflammation
12
adipose
10
antigens contribute
8
tissue
8
high fat
8
associated inflammation
8
adipose tissues
8

Similar Publications

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.

View Article and Find Full Text PDF

This study aimed to investigate the correlation of the increased volume index of epicardial adipose tissue (EAT) and left ventricular hypertrophy (LVH) in patients with Hypertension (HTN). A total of 209 HTN patients and 50 healthy controls, who underwent cardiovascular magnetic resonance (CMR) at two medical centers in China between June 2015 and October 2024, were enrolled for this study. Postprocessing and imaging analysis were conducted and EAT measurements were performed.

View Article and Find Full Text PDF

WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.

Nucleic Acids Res

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.

Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.

View Article and Find Full Text PDF

White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!