A high-accuracy cryogenic radiometer has been developed at the National Institute of Standards and Technology to serve as a primary standard for optical power measurements. This instrument is an electrical-substitution radiometer that can be operated at cryogenic temperatures to achieve a relative standard uncertainty of 0.021% at an optical power level of 0.8 mW. The construction and operation of the high-accuracy cryogenic radiometer and the uncertainties in optical power measurements are detailed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.35.001056DOI Listing

Publication Analysis

Top Keywords

high-accuracy cryogenic
12
cryogenic radiometer
12
optical power
12
national institute
8
institute standards
8
standards technology
8
power measurements
8
technology high-accuracy
4
cryogenic
4
radiometer
4

Similar Publications

It is now possible to generate large volumes of high-quality images of biomolecules at near-atomic resolution and in near-native states using cryogenic electron microscopy/electron tomography (Cryo-EM/ET). However, the precise annotation of structures like filaments and membranes remains a major barrier towards applying these methods in high-throughput. To address this, we present TARDIS (ransformer-bsed apid imensionless nstance egmentation), a machine-learning framework for fast and accurate annotation of micrographs and tomograms.

View Article and Find Full Text PDF

A methodology for predicting proximate and ultimate analysis data was developed by using near-infrared spectroscopy (NIR) combined with chemometric methods. The quantitative model has high accuracy, as evidenced by low root-mean-square-error of prediction (RMSEP) values (e.g.

View Article and Find Full Text PDF

The separation of ethylene from ethane accounts for almost 100 million tons of CO emissions annually and 0.3% of global primary energy usage. Replacing current cryogenic distillation units with adsorption separation units, especially for the minor component of ethane, would enable significant efficiency gains.

View Article and Find Full Text PDF

The scarcity of cryogenic thermometers often stems from their high cost and lengthy lead times for calibration. Establishing an in-lab temperature calibration system is necessary to quickly make use of uncalibrated sensors or self-made sensors. This paper introduces a straightforward and high-accuracy thermometer calibration system.

View Article and Find Full Text PDF

This paper studies the possibility of connecting Wind Farms (WF) to the electric grid with the use of finite space model predictive command (FS-MPC) to manage wind farms to improve the quality of the current output from the doubly-fed induction generator (DFIG) with considering fault ride-through technique. This proposed system can generate active power and enhance the power factor. Furthermore, the reduction of harmonics resulting from the connection of non-linear loads to the electrical grid is achieved through the self-active filtering mechanism in DFIGs-WF, facilitated by the now algorithm proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!