Intracellular signaling pathways regulating net protein balance following diaphragm muscle denervation.

Am J Physiol Cell Physiol

Department of Physiology, Mayo Clinic, Rochester, Minnesota 55905, USA.

Published: February 2011

Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK½ activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK½ phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK½-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043627PMC
http://dx.doi.org/10.1152/ajpcell.00172.2010DOI Listing

Publication Analysis

Top Keywords

protein balance
16
protein
15
protein synthesis
12
increased protein
12
net protein
8
diaphragm muscle
8
evident dnv-5d
8
dnv-5d basis
8
eif4e increased
8
protein degradation
8

Similar Publications

To investigate the correlation between the density and volume of epicardial adipose tissue(EAT)and acute coronary syndrome (ACS). This study included 355 subjects (mean age: 60.65 ± 9.

View Article and Find Full Text PDF

KGF impedes TRIM21-enhanced stabilization of keratin 10 mediating differentiation in hypopharyngeal cancer.

Cell Signal

January 2025

Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China. Electronic address:

KGF, also known as FGF7, is a member of the fibroblast growth factor (FGF) family that binds with high affinity to the FGF receptor 2b (FGFR2b) and regulates various cellular processes, including cell proliferation and differentiation in a variety of tumors. However, its potential role in hypopharyngeal cancer (HPC) remains largely unknown. In our study, we observed increased expression of FGFR2b in HPC.

View Article and Find Full Text PDF

β-Sitosterol modulates osteogenic and adipogenic balance in BMSCs to suppress osteoporosis via regulating mTOR-IMP1-Adipoq axis.

Phytomedicine

January 2025

Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China. Electronic address:

Background: Osteoporosis (OP) is a prevalent global health concern, impacting millions of individuals, especially the elderly. The etiology of senile OP is associated with the imbalance of osteogenic and adipogenic differentiation in the bone marrow mesenchymal stem cells (BMSCs). The imbalance of BMSCs differentiation fate will leading to bone loss and lipids accumulation.

View Article and Find Full Text PDF

Biotransformation of Ganoderma lucidum and Hericium erinaceus for ex vivo gut-brain axis modulation and mood-related outcomes in humans: CREB/BDNF signaling and microbiota-driven synergies.

J Ethnopharmacol

January 2025

Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland. Electronic address:

Background: The human gut microbiota plays a crucial role in various aspects of health, extending beyond digestion and nutrient absorption. Ganoderma lucidum (Reishi) and Hericium erinaceus (Lion's Mane), traditional medicinal mushrooms, have garnered interest due to their potential to exert positive health effects. The aim of our study was to investigate the molecular impact of Reishi and Lion's Mane on mood regulation through the gut-brain axis.

View Article and Find Full Text PDF

Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.

Antioxid Redox Signal

January 2025

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!