We use genome-wide nucleosome maps to study sequence specificity of intrinsic histone-DNA interactions. In contrast with previous approaches, we employ an analogy between a classical one-dimensional fluid of finite-size particles in an arbitrary external potential and arrays of DNA-bound histone octamers. We derive an analytical solution to infer free energies of nucleosome formation directly from nucleosome occupancies measured in high-throughput experiments. The sequence-specific part of free energies is then captured by fitting them to a sum of energies assigned to individual nucleotide motifs. We have developed hierarchical models of increasing complexity and spatial resolution, establishing that nucleosome occupancies can be explained by systematic differences in mono- and dinucleotide content between nucleosomal and linker DNA sequences, with periodic dinucleotide distributions and longer sequence motifs playing a minor role. Furthermore, similar sequence signatures are exhibited by control experiments in which nucleosome-free genomic DNA is either sonicated or digested with micrococcal nuclease, making it possible that current predictions based on high-throughput nucleosome-positioning maps are biased by experimental artifacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000311 | PMC |
http://dx.doi.org/10.1073/pnas.1003838107 | DOI Listing |
Mutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:
Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).
View Article and Find Full Text PDFJ Sports Med Phys Fitness
January 2025
Research Unit on Youth, Physical Activity, Sports and Health (J-AP2S), University of Toulon, Toulon, France.
Background: Understanding the dietary intake of elite adolescent athletes and its adequacy with sport nutrition recommendation is a key issue for health and player development, as well as performance and recovery. Energy availability needs to be considered to ensure optimal health and performance in young athletes. The present study aimed to quantify energy availability, energy expenditure and macronutrient intake in young male rugby union players competing at national level.
View Article and Find Full Text PDFSmall
January 2025
SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India.
Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!