Sulfonylurea and metformin are used in the treatment of diabetes. Their chronic effects on β cells are not well known. We have shown that sustained exposure of rat β cells to glibenclamide increased their protein synthesis activity, while metformin caused an inhibition. The effect of glibenclamide was attributed to an activation of translation factors. This study examines whether both drugs interact at the level of protein translation in β cells. Purified rat β cells were cultured with and without glibenclamide and metformin before measurement of protein and insulin synthesis, abundance of (phosphorylated) translation factors, and cell viability. A 24 h exposure to metformin stimulated AMP-activated protein kinase (AMPK), suppressed activation of translation factors- both the mammalian target of rapamycin (mTOR; also known as mechanistic target of rapamycin, MTOR)-dependent ones (eukaryotic initiation factor 4E-binding protein 1 and ribosomal protein S6) and the mTOR-independent eukaryotic elongation factor 2-, and inhibited protein synthesis; a 72 h exposure resulted in 50% dead cells. These effects were counteracted by addition of glibenclamide, the action of which was blocked by the mTOR inhibitor rapamycin and the protein kinase A (PKA) inhibitor Rp-8-Br-cAMPs. In conclusion, metformin activates AMPK in β cells leading to suppression of protein translation through mTOR-dependent and -independent signaling. Glibenclamide antagonizes these metformin effects through activation of mTOR- and PKA-dependent signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1677/JOE-10-0372DOI Listing

Publication Analysis

Top Keywords

protein
9
glibenclamide metformin
8
rat cells
8
protein synthesis
8
activation translation
8
translation factors
8
protein translation
8
protein kinase
8
target rapamycin
8
metformin
7

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!