The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.

Download full-text PDF

Source

Publication Analysis

Top Keywords

multidrug resistance
12
ribonucleic acid
12
mdr1 gene
12
gene expression
12
reversal multidrug
8
resistance mdr1
8
mdr1 ribonucleic
8
acid interference
8
human colon
8
colon cancer
8

Similar Publications

Emergence of a novel group B streptococcus CC61 clade associated with human infections in southern China.

J Infect

January 2025

National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, PR China. Electronic address:

Objectives: Emerging human pathogens of animal origin have become an increasing public health concern in recent years. The aim of this study was to investigate the transmission of group B streptococcus (GBS) clonal complex (CC) 61 strains in the southern Chinese population and analyze their genetic characteristics.

Methods: Whole-genome sequencing was performed on 693 clinical isolates of GBS collected from southern China between 2016 and 2021, and the prevalence of human CC61 isolates was investigated by genomic epidemiology.

View Article and Find Full Text PDF

Chryseobacterium indologenes is a rare human pathogen which is nowadays considered an emerging fearsome organism because of its upcoming antibiotic resistance. We present a quite unique case of a multi drug resistant C. indologenes surgical wound infection in a patient submitted to cannulated screw fixation of a displaced medial malleolus fracture.

View Article and Find Full Text PDF

Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.

Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.

View Article and Find Full Text PDF

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

Based on the fact that beta-lactam antibiotics demonstrate time-dependent killing, different dosing strategies have been implemented to increase the time that free (f) (unbound) antibiotic concentrations remain above the Minimal Inhibitory Concentration (MIC), including prolonged and continuous infusion. Multiple studies have been performed that compared continuous with traditional intermittent infusion to improve outcomes in patients with severe sepsis and/or septic shock. These studies have yielded inconsistent results for patients as measured by clinical response to treatment and mortality due to heterogeneity of included patients, pathogens, dosing strategies and the absence of Therapeutic Drug Monitoring (TDM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!