Objective: To study the relationship of activated astrocytes and multidrug resistance gene (MDR) expression in rats with epilepsy.

Methods: Astrocytes of neonatal Sprague-Dawley rats were separated and cultured. The cultured cells of passage 3 were activated by TNF-α for 2, 24 or 48 hrs. The culture media of cells with different degrees of proliferation were infused to the lateral cerebral ventricle of rats with epilepsy. The expression of MDR in the brain tissue was ascertained by PCR, immunocytochemistry and Western blot.

Results: After 2 hrs of TNF-α stimulation, astrocytes began to proliferate, and reached a peak at 24 hrs. The expression of MDR in the brain tissue increased after infusion of culture medium of proliferated astrocytes in the TNF stimulation group compared with that in the control group without TNF stimulation. The level of MDR expression in the TNF stimulation group was positively correlated with the degrees of cell proliferation.

Conclusions: Proliferation of astrocytes can increase the expression of MDR in rats with epilepsy and is probably involved in the development of refractory epilepsy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

expression mdr
12
tnf stimulation
12
degrees proliferation
8
multidrug resistance
8
resistance gene
8
expression rats
8
mdr expression
8
rats epilepsy
8
mdr brain
8
brain tissue
8

Similar Publications

Epigenetic and Cellular Reprogramming of Doxorubicin-Resistant MCF-7 Cells Treated with Curcumin.

Int J Mol Sci

December 2024

Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.

The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.

View Article and Find Full Text PDF

Compounds Inhibit MtrCDE Efflux Pump Transport Protein for the Potential Management of Gonorrhoea Infection.

Int J Mol Sci

December 2024

Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.

The progressive development of resistance in to almost all available antibiotics has made it crucial to develop novel approaches to tackling multi-drug resistance (MDR). One of the primary causes of antibiotic resistance is the over-expression of the MtrCDE efflux pump protein, making this protein a vital target for fighting against antimicrobial resistance (AMR) in . This study was aimed at evaluating the potential MtrCDE efflux pump inhibitors (EPIs) and their stability in treating gonorrhoea infection.

View Article and Find Full Text PDF

Metallo-β-lactamases (MBLs) in and other Gram-negative organisms pose significant public health threats due to their association with multidrug resistance (MDR). Although aztreonam (AZT) can target MBL-producing organisms, its efficacy is compromised in organisms expressing additional β-lactamases that inactivate it. Combining AZT with the β-lactamase inhibitor avibactam (AVI) may restore its activity against MBL-producing isolates.

View Article and Find Full Text PDF

Consortium of 2029 and 7247 Strains Shows In Vitro Bactericidal Effect on and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction.

Antibiotics (Basel)

November 2024

Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK.

(CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of 2029 (LC2029), 7247 (LS7247), and a mannan-rich prebiotic (Actigen).

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!