Background: Tetrahydrobiopterin (BH4) is a naturally occurring pteridine and cofactor for a variety of enzymes, including phenylalanine-4-hydroxylase, nitric oxide synthetase and glyceryl ether monooxygenase. BH4 is readily oxidized to dihydrobiopterin and biopterin (B), however only BH4 can provide proper cofactor functions. BH4 is the active ingredient in Kuvan™ for the treatment of phenylketonuria. In order to measure BH4 in plasma from nonclinical and clinical samples with good accuracy, precision, sensitivity and robustness, an LC-MS/MS method was validated. To overcome the oxidation of BH4 in postcollection plasma, the approach was to measure the concentration of BH4 indirectly by measuring B concentration and applying an oxidation conversion ratio. Different endogenous levels of BH4 are determined in human, monkey, dog, rabbit, rat and mouse plasma. Furthermore, the conversion ratio of BH4 to B for each species is different and determined empirically. Plasma is transferred into cryogenic vials containing 0.1% dithioerythritol to prevent oxidation of BH4. The samples are then extracted and oxidized under basic conditions. B is measured with LC-MS/MS using negative ion mode.
Results: The method is accurate, and precise to within 15%. The lower limit of quantitation in matrix is 5, 50 or 100 ng/ml, depending on the species endogenous levels of BH4. The pharmacokinetics of a single oral dose at three concentrations of BH4 administered to C57BL/6 mice is presented. In this mouse study, the T(1/2) of BH4 in plasma was approximately 1.2 h.
Conclusion: The validated LC-MS/MS method to determine plasma BH4 concentration described herein has been used to support many nonclinical and clinical toxicokinetic and pharmacokinetic studies. BH4 is sensitive to oxidation and has a complicated biology. The method successfully supported the approval of Kuvan for the treatment of phenylketonuria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/bio.09.77 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
CNRS - UMR5128 - University of Lyon, 43 av du 11 nov 1918, Villeurbanne, FRANCE.
Bioresour Technol
December 2024
Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:
This study investigates a novel approach to mitigate biofouling in membrane bioreactors (MBRs) using a combinational quorum quenching (QQ) strategy. Rhodococcus sp. BH4 and Acinetobacter sp.
View Article and Find Full Text PDFNeurotherapeutics
December 2024
Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Brain Research institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China.
Redox Biol
November 2024
Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. Electronic address:
Tetrahydrobiopterin (BH4) deficiency is caused by genetic abnormalities that impair its biosynthesis and recycling, which trigger neurochemical, metabolic, and redox imbalances. Low BH4 levels are also associated with hypoxia, reperfusion reoxygenation, endothelial dysfunction, and other conditions that are not genetically determined. The exact cause of changes in BH4 in nongenetic disorders is not entirely understood, but a role for oxidant species has been implicated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!