Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
About 40 years have passed since methylene dizinc reagent was discovered as a substitute for Wittig reagent. Density functional theory (DFT) calculations have been performed to understand the reaction pathways of methylenation of carbonyl compounds with bis(iodozincio)methane. The present computational/theoretical study concluded that the methylenation reaction with gem-dizinc reagent proceeds as a two-step reaction, that is, methylene addition (RDS) and olefination. In the first step, the nucleophilic attack of the CH2 group enhanced by two Zn proceeds under the assistance of the electrophilic activation of the carbonyl group with the Zn atom. In the second step, the olefination is facilitated by both Zn atoms of the gem-dizinc reagent without an electron transfer process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja104439w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!