Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration.

Environ Sci Technol

Mineral Deposit Research Unit, Department of Earth and Ocean Sciences, The University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada.

Published: December 2010

Dypingite, a hydrated Mg-carbonate mineral, was precipitated from high-pH, high salinity solutions to investigate controls on carbon fixation and to identify the isotopic characteristics of mineral sequestration in mine tailings. δ(13)C values of dissolved inorganic carbon content and synthetic dypingite are significantly more negative than those predicted for equilibrium exchange of CO(2) gas between the atmosphere and solution. The measured δ(13)C of aqueous carbonate species is consistent with a kinetic fractionation that results from a slow diffusion of atmospheric CO(2) into solution. During dypingite precipitation, dissolved inorganic carbon concentrations decrease and δ(13)C values become more negative, indicating that the rate of CO(2) uptake into solution was outpaced by the rate of carbon fixation within the precipitate. This implies that CO(2) gas uptake is rate-limiting to CO(2) fixation. δ(13)C of carbonate mineral precipitates in mine tailings and of DIC in mine process waters display similar (13)C-depletions that are inconsistent with equilibrium fractionation. Thus, the rate of carbon fixation in mine tailings may also be limited by supply of CO(2). Carbon sequestration could be accelerated by increasing the partial pressure of CO(2) in tailings ponds or by using chemicals that enhance the uptake of gaseous CO(2) into aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es1021125DOI Listing

Publication Analysis

Top Keywords

carbon fixation
12
mine tailings
12
co2
10
atmospheric co2
8
mine process
8
process waters
8
δ13c values
8
dissolved inorganic
8
inorganic carbon
8
co2 gas
8

Similar Publications

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

Atomically Fine-Tuning Organic-Inorganic Carbon Molecular Sieve Membranes for Hydrogen Production.

ACS Nano

January 2025

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO.

View Article and Find Full Text PDF

Ionic Liquid Aided [C]CO Fixation for Synthesis of C-carbonyls.

ChemistryOpen

January 2025

Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, CAMH, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.

Tributyl(ethyl)phosphonium oxopentenolate ([P][Pen]) is an ionic liquid developed to capture CO and has shown ability to catalyze carbonylation reactions in organic chemistry. Carbon-11 (C, t=20.4 min) labeled CO is a highly versatile building block for the synthesis of positron emission tomography (PET) radiotracers that are applied for medical imaging.

View Article and Find Full Text PDF

Soil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!