The impact of exposure by water to a model androgen, 17β-trenbolone (TRB), was assessed in fathead minnows using an integrated molecular approach. This included classical measures of endocrine exposure such as impacts on testosterone (T), 17β-estradiol (E2), and vitellogenin (VTG) concentrations in plasma, as well as determination of effects on the hepatic metabolome using proton nuclear magnetic resonance spectroscopy. In addition, the rates of production of T and E2 in ovary explants were measured, as were changes in a number of ovarian gene transcripts hypothesized to be relevant to androgen exposure. A temporally intensive 16-d test design was used to assess responses both during and after the TRB exposure (i.e., depuration/recovery). This strategy revealed time-dependent responses in females (little impact was seen in the males), in which changes in T and E2 production in the ovary, as well as levels in plasma, declined rapidly (within 1 d), followed shortly by a return to control levels. Gene expression measurements revealed dynamic control of transcript levels in the ovary and suggested potential mechanisms for compensation during the exposure phase of the test. Proton nuclear magnetic resonance spectroscopy revealed a number of hepatic metabolite changes that exhibited strong time and dose dependence. Furthermore, TRB appeared to induce the hepatic metabolome of females to become more like that of males at both high test concentrations of TRB (472 ng/L) and more environmentally relevant levels (33 ng/L).

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.406DOI Listing

Publication Analysis

Top Keywords

gene expression
8
model androgen
8
androgen 17β-trenbolone
8
hepatic metabolome
8
proton nuclear
8
nuclear magnetic
8
magnetic resonance
8
resonance spectroscopy
8
production ovary
8
exposure
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!