Breakdown of the blood-brain barrier (BBB) is present in several neurological disorders such as stroke, brain tumors, and multiple sclerosis. Noninvasive evaluation of BBB breakdown is important for monitoring disease progression and evaluating therapeutic efficacy in such disorders. One of the few techniques available for noninvasively and repeatedly localizing and quantifying BBB damage is magnetic resonance imaging (MRI). This usually involves the intravenous administration of a gadolinium-containing MR contrast agent (MRCA) such as Gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA), followed by dynamic contrast-enhanced MR imaging (DCE-MRI) of brain and blood, and analysis of the resultant data to derive indices of blood-to-brain transfer. There are two advantages to this approach. First, measurements can be made repeatedly in the same animal; for instance, they can be made before drug treatment and then again after treatment to assess efficacy. Secondly, MRI studies can be multiparametric. That is, MRI can be used to assess not only a blood-to-brain transfer or influx rate constant (Ki or K1) by DCE-MRI but also complementary parameters such as: (1) cerebral blood flow (CBF), done in our hands by arterial spin-tagging (AST) methods; (2) magnetization transfer (MT) parameters, most notably T1sat, which appear to reflect brain water-protein interactions plus BBB and tissue dysfunction; (3) the apparent diffusion coefficient of water (ADCw) and/or diffusion tensor, which is a function of the size and tortuosity of the extracellular space; and (4) the transverse relaxation time by T2-weighted imaging, which demarcates areas of tissue abnormality in many cases. The accuracy and reliability of two of these multiparametric MRI measures, CBF by AST and DCE-MRI determined influx of Gd-DTPA, have been established by nearly congruent quantitative autoradiographic (QAR) studies with appropriate radiotracers. In addition, some of their linkages to local pathology have been shown via corresponding light microscopy and fluorescence imaging. This chapter describes: (1) multiparametric MRI techniques with emphasis on DCE-MRI and AST-MRI; (2) the measurement of the blood-to-brain influx rate constant and CBF; and (3) the role of each in determining BBB permeability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788825PMC
http://dx.doi.org/10.1007/978-1-60761-938-3_8DOI Listing

Publication Analysis

Top Keywords

multiparametric mri
12
magnetic resonance
8
resonance imaging
8
blood-brain barrier
8
blood-to-brain transfer
8
influx rate
8
rate constant
8
imaging
5
bbb
5
mri
5

Similar Publications

Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer.

Radiology

January 2025

From the Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen University, Taoyuan Rd No. 89, Nanshan District, Shenzhen 518000, Guangdong, China (H.H., Z.D., Y.Q.); Medical AI Laboratory and Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China (J.M., R.L., B.H.); Department of Medical Imaging, People's Hospital of Longhua, Shenzhen, Guangdong, China (X.P., Y.Z.); and Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China (D.Z., G.H.).

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.

View Article and Find Full Text PDF

Magnetic resonance guided focused ultrasound (MRgFUS) is one of the most attractive emerging minimally invasive procedures for breast cancer, which induces localized hyperthermia, resulting in tumor cell death. Accurately assessing the post-ablation viability of all treated tumor tissue and surrounding margins immediately after MRgFUS thermal therapy residual tumor tissue is essential for evaluating treatment efficacy. While both thermal and vascular MRI-derived biomarkers are currently used to assess treatment efficacy, currently, no adequately accurate methods exist for the in vivo determination of tissue viability during treatment.

View Article and Find Full Text PDF

Purpose: Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity.

View Article and Find Full Text PDF

ConvXGB: A novel deep learning model to predict recurrence risk of early-stage cervical cancer following surgery using multiparametric MRI images.

Transl Oncol

January 2025

State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Background: Accurate estimation of recurrence risk for cervical cancer plays a pivot role in making individualized treatment plans. We aimed to develop and externally validate an end-to-end deep learning model for predicting recurrence risk in cervical cancer patients following surgery by using multiparametric MRI images.

Methods: The clinicopathologic data and multiparametric MRI images of 406 cervical cancer patients from three institutions were collected.

View Article and Find Full Text PDF

Detecting Hemorrhagic Myocardial Infarction With 3.0-T CMR: Insights Into Spatial Manifestation, Time-Dependence, and Optimal Acquisitions.

JACC Cardiovasc Imaging

January 2025

Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:

Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!