Mutations in the survival motor neuron (SMN) protein alter the dynamic nature of nuclear bodies.

Neuromolecular Med

Clinical Neurobiology, Institute of Biomedical and Clinical Sciences, Peninsula Medical School, University of Exeter, Heavitree Rd, Exeter, EX1 2LU, UK.

Published: March 2011

The childhood disorder spinal muscular atrophy (SMA) is caused by reduced expression of the survival motor neuron (SMN) protein. SMN is a multifunctional protein that has been implicated in the production, processing and transport of RNA and ribonucleoproteins (RNPs). Within the nucleus, SMN is predominantly targeted to Cajal bodies (CB), which are involved in the maturation and processing of several subclasses of RNPs. Here, we show that the SMN exon 2b-encoded domain (SMN2b) is independently sufficient to mediate CB targeting, but that the resulting bodies are less dynamic than those containing full-length SMN protein. We also show that while two SMN proteins harbouring SMA-causing point mutations (A2G and S262I) are efficiently targeted to CBs, they also display reduced nuclear movement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12017-010-8139-1DOI Listing

Publication Analysis

Top Keywords

smn protein
12
survival motor
8
motor neuron
8
neuron smn
8
protein smn
8
smn
7
mutations survival
4
protein
4
protein alter
4
alter dynamic
4

Similar Publications

Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.

Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).

View Article and Find Full Text PDF

Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.

View Article and Find Full Text PDF

Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.

View Article and Find Full Text PDF

The effect of silymarin on diabetes mellitus-induced male rats reproductive impairment: Evidences for role of heat shock proteins 70 and 90.

Pol J Vet Sci

December 2024

Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.

Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.

View Article and Find Full Text PDF

The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!