Although biotransformation is generally considered to be the main process by which to remove pharmaceuticals, both in sewage treatment plants and in aquatic environments, quantitative information on specific compounds is scarce. In this study, the transformations of diclofenac (DCF), naproxen (NPX), and bisoprolol (BSP) were studied under aerobic and anaerobic conditions using inocula taken from activated and digested sludge processes, respectively. Whereas concentration decays were monitored by LC-tandem mass spectrometry, oxygen consumption and methane production were used for the evaluation of the performance of overall conditions. DCF was recalcitrant against both aerobic and anaerobic biotransformation. More than one third of the BSP disappeared under aerobic conditions, whereas only 14% was anaerobically biotransformed in 161 days. Under aerobic conditions, complete removal of NPX was evident within 14 days, but anaerobic transformation was also efficient. Formation of 6-O-desmethylnaproxen, a previously reported aerobic metabolite, was also detected under anaerobic conditions and persisted for 161 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-010-9622-2 | DOI Listing |
J Voice
January 2025
Department of Speech, Language, and Hearing Sciences, Auburn University, Auburn, AL.
Purpose: Blood lactate concentration is commonly used to assess metabolic demand and skeletal muscle training response. The objective of the pilot study was to investigate if a change in blood lactate was detectable in an anaerobically designed vocal demand task vocal capacity anaerobic task (VCAT) and determine if the developed vocal demand task may assess the anaerobic capacity of the voice musculature, like anaerobic power tests commonly used in applied exercise science.
Methods: A prospective repeated measures study quantified blood lactate concentration preVCAT and postVCAT in vocally healthy adults.
J Environ Manage
January 2025
Engineering Department, University of Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy.
The products of an advanced sewage sludge fermentation process can be used to generate polyhydroxyalkanoates (PHAs), precursors of bioplastics considered excellent candidates for replacing petroleum-derived plastics. The aerobic feast-anoxic famine cycling strategy has proven to be an efficient method for enriching sewage sludge microbiota with PHA-producing microorganisms. This work evaluated the effect of different carbon to nitrogen ratios (C/N) of 3.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:
Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants that may pose risks to human health and environmental biota, including soil microbial communities. These risks are further affected by a multitude of factors, including environmental conditions encountered in real-world settings. A comprehensive understanding of how PBDEs transform and microbial communities respond to the exposure under varying environmental conditions is paramount for assessing the ecological risks or identifying potential degraders.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.
View Article and Find Full Text PDFPeerJ
January 2025
College of Agronomy, Guizhou University, Guiyang, Guizhou, China.
Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!