Single-crystal aluminum-gallium oxide films have been grown by molecular beam epitaxy in the corundum phase. Films of the (Al(1-x)Ga(x))(2)O(3) alloys doped with neodymium have favorable properties for solid-state waveguide lasers, including a high-thermal-conductivity sapphire substrate and a dominant emission peak in the 1090-1096 nm wavelength range. The peak position is linearly correlated to the unit cell volume, which is dependent on film composition and stress. Varying the Ga-Al alloy composition during growth will enable the fabrication of graded-index layers for tunable lasing wavelengths and low scattering losses at the interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.35.003793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!