Dynamics of podosome stiffness revealed by atomic force microscopy.

Proc Natl Acad Sci U S A

Centre National de la Recherche Scientifique-Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Université de Toulouse, Université Paul Sabatier, F-31077 Toulouse, France.

Published: December 2010

Podosomes are unique cellular entities specifically found in macrophages and involved in cell-matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000246PMC
http://dx.doi.org/10.1073/pnas.1007835107DOI Listing

Publication Analysis

Top Keywords

atomic force
8
force microscopy
8
physical properties
8
living macrophages
8
podosomes
5
dynamics podosome
4
podosome stiffness
4
stiffness revealed
4
revealed atomic
4
microscopy podosomes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!