The covalent modification of proteins by metabolites of arachidonic acid (AA) was investigated in human platelets. Following incubation of washed human platelets with radiolabeled AA, ethanol precipitation of the proteins, and lipid extraction by organic solvents, a small fraction of the radioactivity added (0.3%) was tightly bound to the protein pellet. A dozen labeled protein bands were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Exhaustive hydrolysis of platelet proteins by proteases released an amphipathic radiolabeled material which had a chromatographic behavior similar to that of a known peptidolipid, leukotriene C4. These findings suggest a covalent nature for the observed binding. This binding was specific for AA since palmitate, myristate, or linoleate did not bind to a significant extent. It involved products of both cyclooxygenase and lipoxygenase pathways: it was indeed inhibited to a greater extent by eicosatetraynoic acid than by indomethacin. The protein-associated radioactivity was increased by the thromboxane synthase inhibitor dazoxiben. Indomethacin completely abolished this increase in binding, which could not be reproduced by exogenous prostaglandin (PG) E2, F2 alpha, or D2, and might thus involve PGG2 and/or PGH2. Diamide, an agent known to inhibit the reduction of 12-hydroperoxyeicosatetraenoic acid in platelets, produced an increase of the covalent binding, which was abolished by eicosatetraynoic acid but not by indomethacin: this suggests that the lipoxygenase product bound was 12-hydroperoxyeicosatetraenoic acid or a by-product. Dazoxiben and diamide produced distinct patterns of protein labeling after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One labeled band had a Mr of 70,000 as the PGH synthase monomer. Addition of AA at 17 microM enhanced the labeling of this band, while 100 microM was inhibitory. Labeling of this band was also induced by thrombin in prelabeled platelets. Two monoclonal antibodies against PGH synthase caused immune precipitation of a 70-kDa labeled protein in homogenates of [3H]AA-labeled platelets. PGH synthase, purified from ram seminal vesicles, was covalently modified after incubation with [3H]AA: this labeling was almost completely abolished by indomethacin. As much as 40% of platelet PGH synthase was covalently modified after incubation with 17 microM AA. It can be concluded that in intact platelets PGH synthase is covalently modified by an eicosanoid following incubation with exogenous AA or after AA mobilization from phospholipids by thrombin.
Download full-text PDF |
Source |
---|
BMC Vet Res
January 2025
Division of Oncology, Department of Clinical Sciences, Lund University, Lund, 22381, Sweden.
Background: Prostaglandin E2 (PGE2) is vital for embryo implantation and decidualization. Whether COX2/mPGES1/PGE2 pathway is essential for mouse and human decidualization remains unclear.
Results: This study showed that mPGES1 was highly expressed in the mouse uterus's subluminal stromal cells at the implantation site.
Wiad Lek
January 2025
DEPARTMENT OF PHARMACOLOGY AND TOXICOLOGY, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ.
Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.
Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.
Molecules
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy.
Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!