Differences in expression profiles, substrate specificities, kinetic properties and subcellular localization among the AK (adenylate kinase) isoenzymes have been shown to be important for maintaining a proper adenine nucleotide composition for many different cell functions. In the present study, human AK7 was characterized and its substrate specificity, kinetic properties and subcellular localization determined. In addition, a novel member of the human AK family, with two functional domains, was identified and characterized and assigned the name AK8. AK8 is the second known human AK with two complete and active AK domains within its polypeptide chain, a feature that has previously been shown for AK5. The full-length AK8, as well as its two domains AK8p1 and AK8p2, all showed similar AK enzyme activity. AK7, full-length AK8, AK8p1 and AK8p2 phosphorylated AMP, CMP, dAMP and dCMP with ATP as the phosphate donor, and also AMP, CMP and dCMP with GTP as the phosphate donor. Both AK7 and full-length AK8 showed highest affinity for AMP with ATP as the phosphate donor, and proved to be more efficient in AMP phosphorylation as compared with the major cytosolic isoform AK1. Expression of the proteins fused with green fluorescent protein demonstrated a cytosolic localization for both AK7 and AK8.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20101443DOI Listing

Publication Analysis

Top Keywords

full-length ak8
12
phosphate donor
12
adenylate kinase
8
kinase isoenzymes
8
kinetic properties
8
properties subcellular
8
subcellular localization
8
ak8p1 ak8p2
8
ak7 full-length
8
amp cmp
8

Similar Publications

RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.

mBio

May 2017

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA

The diversity of the genetic code systems used by microbes on earth is yet to be elucidated. It is known that certain methanogenic archaea employ an alternative system for cysteine (Cys) biosynthesis and encoding; tRNA is first acylated with phosphoserine (Sep) by -phosphoseryl-tRNA synthetase (SepRS) and then converted to Cys-tRNA by Sep-tRNA:Cys-tRNA synthase (SepCysS). In this study, we searched all genomic and metagenomic protein sequence data in the Integrated Microbial Genomes (IMG) system and at the NCBI to reveal new clades of SepRS and SepCysS proteins belonging to diverse archaea in the four major groups (DPANN, , TACK, and Asgard) and two groups of bacteria (" Parcubacteria" and ).

View Article and Find Full Text PDF

Differences in expression profiles, substrate specificities, kinetic properties and subcellular localization among the AK (adenylate kinase) isoenzymes have been shown to be important for maintaining a proper adenine nucleotide composition for many different cell functions. In the present study, human AK7 was characterized and its substrate specificity, kinetic properties and subcellular localization determined. In addition, a novel member of the human AK family, with two functional domains, was identified and characterized and assigned the name AK8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!