Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00016349.2010.537051 | DOI Listing |
J Allergy Clin Immunol
January 2025
National Heart and Lung Institute, Imperial College London, UK; NIHR Imperial Biomedical Research Centre, UK; Frankland and Kay Allergy Centre, Imperial College London, UK.
J Am Chem Soc
January 2025
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Peter-Grünberg-Institut PGI-1, Forschungszentrum Jülich, D-52425 Jülich, Germany.
The importance of the structure-function relationship in molecular biology was confirmed dramatically by the recent award of the 2024 Nobel Prize in Chemistry 'for computational protein design' and 'for protein structure prediction'. The relationship is also important in chemistry and condensed matter physics, and we survey here structural concepts that have been developed over the past century, particularly in chemistry. As an example we take structural phase transitions in phase-change materials (PCM), which can be switched rapidly and reversibly between amorphous and crystalline states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!