Leukotrienes (LTs) are arachidonic acid-derived lipid mediators involved in the pathogenesis and progression of diverse inflammatory disorders. The cysteinyl-leukotrienes LTC(4), LTD(4), and LTE(4) are important mediators of asthma, and LTB(4) has recently been implicated in atherosclerosis. Here we report that mRNA levels for the three key enzymes/proteins in the biosynthesis of cysteinyl-leukotrienes, 5-lipoxygenase (5-LO), 5-LO-activating protein (FLAP), and LTC(4) synthase (LTC(4)S), are significantly increased in the wall of human abdominal aortic aneurysms (AAAs). In contrast, mRNA levels of LTA(4) hydrolase, the enzyme responsible for the biosynthesis of LTB(4), are not increased. Immunohistochemical staining of AAA wall revealed focal expression of 5-LO, FLAP, and LTC(4)S proteins in the media and adventitia, localized in areas rich in inflammatory cells, including macrophages, neutrophils, and mast cells. Human AAA wall tissue converts arachidonic acid and the unstable epoxide LTA(4) into significant amounts of cysteinyl-leukotrienes and to a lesser extent LTB(4). Furthermore, challenge of AAA wall tissue with exogenous LTD(4) increases the release of matrix metalloproteinase (MMP) 2 and 9, and selective inhibition of the CysLT1 receptor by montelukast blocks this effect. The increased expression of LTC(4)S, together with the predominant formation of cysteinyl-leukotrienes and effects on MMPs production, suggests a mechanism by which LTs may promote matrix degradation in the AAA wall and identify the components of the cysteinyl-leukotriene pathway as potential targets for prevention and treatment of AAA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000261 | PMC |
http://dx.doi.org/10.1073/pnas.1015166107 | DOI Listing |
JCI Insight
January 2025
Section of Vascular Surgery, Department of Surgery, and.
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Vascular Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria.
: We aimed to predict patient-specific rupture risks and growth behaviors in abdominal aortic aneurysm (AAA) patients using biomechanical evaluation with finite element analysis to establish an additional AAA repair threshold besides diameter and sex. : A total of 1219 patients treated between 2005 and 2024 (conservative and repaired AAAs) were screened for a pseudo-prospective single-center study. A total of 15 ruptured (rAAA) vs.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
To establish the extent, distribution and frequency of in-vivo vessel wall [Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). 65 oncological patients undergoing [Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined.
View Article and Find Full Text PDFThe COVID-19 virus not only has significant pathogenicity but also influences the progression of many diseases, altering patient prognosis. Cardiovascular diseases, particularly aortic aneurysms, are among the most life-threatening conditions. COVID-19 infection is reported to accelerate the progression of abdominal aortic aneurysms (AAAs) and increase the risk of rupture; however, a comprehensive understanding of the underlying mechanisms remains elusive.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore.
Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide with abdominal aortic aneurysm (AAA) and renal artery stenosis (RAS) standing out as significant contributors to the vascular pathology spectrum. While these conditions have traditionally been approached as distinct entities, emerging evidence suggests a compelling interdependent relationship between AAA and RAS, challenging the conventional siloed understanding. The confluence of AAA and RAS represents a complex interplay within the cardiovascular system, one that is often overlooked in clinical practice and research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!