The accuracy of dynamical models for reactive scattering of molecular hydrogen, H(2), from metal surfaces is relevant to the validation of first principles electronic structure methods for molecules interacting with metal surfaces. The ability to validate such methods is important to progress in modeling heterogeneous catalysis. Here, we study vibrational excitation of H(2) on Cu(111) using the Born-Oppenheimer static surface model. The potential energy surface (PES) used was validated previously by calculations that reproduced experimental data on reaction and rotationally inelastic scattering in this system with chemical accuracy to within errors ≤ 1 kcal/mol ≈ 4.2 kJ/mol [Díaz C, et al. (2009) Science 326:832-834]. Using the same PES and model, our dynamics calculations underestimate the contribution of vibrational excitation to previously measured time-of-flight spectra of H(2) scattered from Cu(111) by a factor 3. Given the accuracy of the PES for the experiments for which the Born-Oppenheimer static surface model is expected to hold, we argue that modeling the effect of the surface degrees of freedom will be necessary to describe vibrational excitation with similar high accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000304 | PMC |
http://dx.doi.org/10.1073/pnas.1001098107 | DOI Listing |
J Phys Chem A
January 2025
College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
We report the results of a study of the interaction between torsion and the low frequency out-of-plane silyl wag vibration in the ground, S, and excited, S, electronic states of phenylsilane. These studies follow the observation of interactions between methyl torsion and the out-of-plane methyl wagging vibration in toluene, several fluoro-substituted toluenes and -methylpyrrole. The interaction leads to various spectroscopic constants becoming divorced from their usual physical meaning.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Physics, Liaoning University, Shenyang 110036, China.
Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University, 52062 Aachen, Germany.
Synchronous vibrations, which are caused by periodic excitations, can have a severe impact on the service life of impellers. Blade Tip Timing (BTT) is a promising technique for monitoring synchronous vibrations due to its non-intrusive nature and ability to monitor all blades at once. BTT generally employs a Once-per-Revolution (OPR) sensor that is mounted on the shaft for blade identification and deflection calculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!