A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle. | LitMetric

Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle.

J Gen Physiol

Department of Pharmacology and Physiology, and 2 Department of Neurology, University of Rochester, Rochester, NY 14642, USA.

Published: December 2010

Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15-16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at -140 mV; -39.0 +/- 4.5 and -42.3 +/- 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V(1/2) was -61.0 +/- 1.7 and -64.5 +/- 2.8 mV; k was 20.5 ± 0.8 and 22.8 +/- 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 +/- 36 to 312 +/- 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an approximately 40 and 60% reduction in membrane capacitance in FDB fibers from 15-16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90 degrees out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein-tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995150PMC
http://dx.doi.org/10.1085/jgp.201010526DOI Listing

Publication Analysis

Top Keywords

clc-1 channels
20
skeletal muscle
20
functional clc-1
12
channels adult
12
clc-1
10
mouse skeletal
8
muscle fibers
8
adult mouse
8
fibers 15-16-day-old
8
clc-1 activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!