We propose here a class of restoration algorithms for color images, based upon the Mumford-Shah (MS) model and nonlocal image information. The Ambrosio-Tortorelli and Shah elliptic approximations are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, texture is nonlocal in nature and requires semilocal/non-local information for efficient image denoising and restoration. Inspired from recent works (nonlocal means of Buades, Coll, Morel, and nonlocal total variation of Gilboa, Osher), we extend the local Ambrosio-Tortorelli and Shah approximations to MS functional (MS) to novel nonlocal formulations, for better restoration of fine structures and texture. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, color image super-resolution, and color filter array demosaicing. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. We also prove several characterizations of minimizers based upon dual norm formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2010.2092433 | DOI Listing |
Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.
View Article and Find Full Text PDFBackground: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.
View Article and Find Full Text PDFJ Cent Nerv Syst Dis
January 2025
CRCSEP, Université Nice Cote d'Azur, Nice, France.
Multiple sclerosis (MS) falls within the spectrum of central nervous system (CNS) demyelinating diseases that may lead to permanent neurological disability. Fundamental to the diagnosis and clinical surveillance is magnetic resonance imaging (MRI) that allows for the identification of T2-hyperintensities associated with autoimmune injury that demonstrate distinct spatial distribution patterns. Here, we describe the clinical experience of a 31-year-old, right-handed, White man seen in consultation at The University of Texas Southwestern Medical Center in Dallas, Texas, following complaints of headaches that began after head trauma related to military service.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Paediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Cairo University, EL-Saraya Street, Cairo, Egypt.
Background: There are different intraoral appliances for cessation of thumb/finger sucking habit, but they have many disadvantages and to overcome it, extra oral appliances with colourful and attractive shape were developed. Electronic habit reminder in the form of wristwatch with alarming sound was assessed in cessation of thumb/finger sucking habit in children versus palatal crib after 6 and 9 months.
Methods: This study is a randomized clinical pilot study, with allocation ratio 1:1 parallel group.
J Echocardiogr
January 2025
Department of Pediatric Cardiology, Chukyo Hospital, 1-1-10 Sanjo, Minami-ku, Nagoya, Aichi, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!