Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function, and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. The statins are cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase, which is the rate-limiting step of cholesterol biosynthesis in the mevalonate (MA) pathway. These drugs have been associated with improved respiratory health, and ongoing clinical trials are testing their therapeutic potential in asthma. We hypothesized that simvastatin treatment of ovalbumin (OVA)-exposed mice would attenuate early features of airway remodeling by a mevalonate-dependent mechanism. BALB/c mice initially were sensitized to OVA and then exposed to 1% OVA aerosol for 2 weeks after sensitization for 6 exposures. Simvastatin (40 mg/kg) or simvastatin plus MA (20 mg/kg) were injected intraperitoneally before each OVA exposure. Treatment with simvastatin attenuated goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme activity, but it did not alter airway hydroxyproline content or transforming growth factor-β1. Inhibition of goblet cell hyperplasia by simvastatin was mevalonate-dependent. No appreciable changes to airway smooth muscle cells were observed in any control or treatment groups. In conclusion, in an acute mouse model of allergic asthma, simvastatin inhibited early hallmarks of airway remodeling, which are indicators that can lead to airway thickening and fibrosis. Statins are potentially novel treatments for airway remodeling in asthma. Additional studies using subchronic or chronic allergen exposure models are needed to extend these initial findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990975 | PMC |
http://dx.doi.org/10.1016/j.trsl.2010.09.003 | DOI Listing |
Environ Epigenet
January 2025
Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Fine particulate matter (PM), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM exposure and its association with asthma in human airway epithelial cells.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
University of Alabama at Birmingham, Medicine, Birmingham, Alabama, United States;
Sci Adv
January 2025
Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.
View Article and Find Full Text PDFMol Ther
January 2025
Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia. Electronic address:
Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in COPD is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1, uPAR) that induced collagen and airway remodeling.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Otolaryngology, Nationwide Children's Hospital, Columbus, United States of America.
Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!