Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has long been believed that genetically determined, but not environmentally acquired, phenotypes can be inherited. However, a large number of recent studies have reported that phenotypes acquired from an animal's environment can be transmitted to the next generation. Moreover, epidemiology studies have hinted that a similar phenomenon occurs in humans. This type of inheritance does not involve gene mutations that change DNA sequence. Instead, it is thought that epigenetic changes in chromatin, such as DNA methylation and histone modification, occur. In this review, we will focus on one exciting new example of this phenomenon, transfer across generations of enhanced synaptic plasticity and memory formation induced by exposure to an "enriched" environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070197 | PMC |
http://dx.doi.org/10.1016/j.brainresbull.2010.11.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!