Fragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses of the hippocampus. Here we examine the effects of chronic treatment of Fragile X mice in vivo with lithium or a group II mGluR antagonist on mGluR-LTD at CA1 synapses. We find that long-term lithium treatment initiated during development (5-6 weeks of age) and continued throughout the lifetime of the Fragile X mice until 9-11 months of age restores normal mGluR-LTD. Additionally, chronic short-term treatment beginning in adult Fragile X mice (8 weeks of age) with either lithium or an mGluR antagonist is also able to restore normal mGluR-LTD. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of Fragile X syndrome is an important advance, in that this identifies and validates these targets as potential therapeutic interventions for the treatment of individuals afflicted with Fragile X syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050427PMC
http://dx.doi.org/10.1016/j.brainres.2010.11.032DOI Listing

Publication Analysis

Top Keywords

fragile syndrome
20
mouse model
12
model fragile
12
mglur antagonist
12
fragile mice
12
fragile
9
group mglur
8
lithium treatment
8
treatment fragile
8
drosophila model
8

Similar Publications

Electroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.

View Article and Find Full Text PDF

Background: Critical analysis of studies with high level of evidence has relied on the significance set by the reported values. However, this strategy steers readers toward categorical interpretation of the data; therefore, a more comprehensive approach of data analysis is warranted. The continuous fragility index (CFI) allows for frailty interpretation of any given study's continuous outcome results.

View Article and Find Full Text PDF

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

Protocol for generating and characterizing a nasal epithelial model using imaging with application for respiratory viruses.

STAR Protoc

January 2025

Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. Electronic address:

Air-liquid interface (ALI) culture can differentiate airway epithelial cells to recapitulate the respiratory tract in vitro. Here, we present a protocol for isolating and culturing nasal epithelial cells from turbinate tissues for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We describe steps to overcome challenges of imaging fragile cultures, detect the production of mucus, and quantify intracellular virus post-SARS-CoV-2 infection.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!