Background: H9N2 avian influenza A viruses have become panzootic in Eurasia over the last decade and have caused several human infections in Asia since 1998. To study their evolution and zoonotic potential, we conducted an in silico analysis of H9N2 viruses that have infected humans between 1997 and 2009 and identified potential novel reassortments.
Results: A total of 22 hemagglutinin (HA) and neuraminidase (NA) nucleotide and deduced amino acid sequences were retrieved from the NCBI flu database. It was identified that mature peptide sequences of HA genes isolated from humans in 2009 had glutamine at position 226 (H3) of the receptor binding site, indicating a preference to bind to the human α (2-6) sialic acid receptors, which is different from previously isolated viruses and studies where the presence of leucine at the same position contributes to preference for human receptors and presence of glutamine towards avian receptors. Similarly, strains isolated in 2009 possessed new motif R-S-N-R in spite of typical R-S-S-R at the cleavage site of HA, which isn't reported before for H9N2 cases in humans. Other changes involved loss, addition, and variations in potential glycosylation sites as well as in predicted epitopes. The results of phylogenetic analysis indicated that HA and NA gene segments of H9N2 including those from current and proposed vaccine strains belong to two different Eurasian phylogenetic lineages confirming possible genetic reassortments.
Conclusions: These findings support the continuous evolution of avian H9N2 viruses towards human as host and are in favor of effective surveillance and better characterization studies to address this issue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994543 | PMC |
http://dx.doi.org/10.1186/1743-422X-7-319 | DOI Listing |
Front Vet Sci
January 2025
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Interactions between humans and livestock could increase the risk of zoonotic disease transmission. In addition, limited knowledge of zoonoses and foodborne diseases among livestock farmers could heighten the risks of foodborne illness and outbreaks of zoonotic diseases. This study evaluated the awareness of zoonotic diseases and preventive practices for zoonotic and foodborne diseases among livestock farmers of the Chitwan, Rupandehi, and Tanahun districts of Nepal by conducting a cross-sectional survey of 280 livestock farmers.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Human Link, Dubai, United Arab Emirates.
Reassortant highly pathogenic avian influenza A(H5N2) clade 2.3.4.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
We present the first documented case of highly pathogenic avian influenza virus (HPAIV) subtype H5N5 in an Atlantic walrus (). The animal was found dead in Svalbard, Norway, in 2023. Sequence analysis revealed the highest genetic similarity with virus isolates from different avian hosts.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou City, Fujian Province, China.
What Is Known About This Topic?: Global human cases of zoonotic influenza A(H5N6) have increased significantly in recent years, primarily due to widespread circulation of clade 2.3.4.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!