A tube Ge(60)H(60) isomer in D(5d) symmetry with fused five-membered rings located at the ends of the tube is more stable than the fullerene-like I(h) cage isomer at the B3LYP/cc-pVDZ level of theory. Introducing endo Ge-H bonds increases the stability of both cage and tube isomers. The most stable tube isomer can admit six endo Ge-H bonds. The cage isomer can admit 10-12 endo Ge-H bonds (H(10)@Ge(60)H(50) and H(12)@Ge(60)H(48)), and they also represent the most stable Ge(60)H(60) isomers. The stability order and structural patterns of Ge(60)H(60) are the same as those found for the corresponding Si(60)H(60) isomers. Moreover, it is found that the 6-31G(d,p) basis set fails to predict the relative energies of the Ge(60)H(60) isomers and the Ge(6)H(6) isomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp107713y | DOI Listing |
Chem Commun (Camb)
March 2022
Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France.
Intramolecular alkyne germylzincation giving access to a wide range of germoles is achieved from triarylhydrogermanes in the presence of diethylzinc and AIBN as radical initiator. The reaction proceeds through activation of the Ge-H bond, leading to a heteroarylzinc intermediate after cyclisation, which can then be involved in a post-functionalisation reaction. Our results show that only 5- cyclizations occur, with benzogermoles being exclusively obtained.
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2020
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, College of Life Sciences, Hubei University, NO. 368 Youyi Road, Wuchang District, Wuhan, 430062, Hubei, China.
Xylanases are extensively used as industrial enzymes for its ability of hydrolyzing xylan to oligosaccharides. Here, XynHB, a thermo and alkaline stable xylanase derived from Bacillus pumilus HBP8, was extracellularly produced in E. coli cells through N-terminal-fused signal peptides.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China;
Lanthipeptides are an important subfamily of ribosomally synthesized and posttranslationally modified peptides, and the removal of their N-terminal leader peptides by a designated protease(s) is a key step during maturation. Whereas proteases for class I and II lanthipeptides are well-characterized, the identity of the protease(s) responsible for class III leader processing remains unclear. Herein, we report that the class III lanthipeptide NAI-112 employs a bifunctional Zn-dependent protease, AplP, with both endo- and aminopeptidase activities to complete leader peptide removal, which is unprecedented in the biosynthesis of lanthipeptides.
View Article and Find Full Text PDFInt J Biol Macromol
March 2019
Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, Fujian, PR China. Electronic address:
Acidic xylanases possess the unique features necessary for the tolerance of acidic environments, which may have great potentials for industrial purposes. However, factors controlling the pH-dependent stability of xylanases are only partially known. Here we proposed a residue interaction networks based method to analyze the differences of residue interactions between 6 pairs of experimentally verified acidic and neutral xylanases.
View Article and Find Full Text PDFInt J Biol Macromol
October 2018
Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, Fujian, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!