In this study, a series of electrochemically active oligo(ethylene glycol) (OEG) linear-dendrons have been synthesized and grafted onto electrode surfaces by cyclic voltammetry (CV) to improve protein resistance. Dendronized molecules with peripheral carbazole functionality and branching architecture enabled tethering of the poly(ethylene glycol) (PEG) or OEG group with a predictable number of electrochemical reactive groups affecting OEG distribution and orientation. It is possible that ample spacing between the OEG chains affects the intrinsic hydration of these layers and thus surface protein resistance. The films were characterized by CV, surface plasmon resonance (SPR), static contact angle measurements, and atomic force microscopy (AFM). This approach should enable improved nonbiofouling properties on biorelevant electrode surfaces (metal or metal oxides) by potentiostatic or potentiodynamic electrochemical methods, providing an alternative to the self-assembled monolayer (SAM) approach for anchoring PEG layers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am100737sDOI Listing

Publication Analysis

Top Keywords

electrode surfaces
8
protein resistance
8
synthesis electrografting
4
electrografting dendron
4
dendron anchored
4
anchored oegylated
4
oegylated surfaces
4
surfaces protein
4
protein adsorption
4
adsorption resistance
4

Similar Publications

Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.

View Article and Find Full Text PDF

Amorphous Ni(OH) Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation.

Small

January 2025

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Since formaldehyde oxidation reaction (FOR) can release H, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)/CF) is prepared.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!