In this work, the friction anisotropy of hexagonal MoS(2) (a well-known lamellar compound) was theoretically investigated. A molecular dynamics method was adopted to study the dynamical friction of two-layered MoS(2) sheets at atomistic level. Rotational disorder was depicted by rotating one layer and was changed from 0° to 60°, in 5° intervals. The superimposed structures with misfit angle of 0° and 60° are commensurate, and others are incommensurate. Friction dynamics was simulated by applying an external pressure and a sliding speed to the model. During friction simulation, the incommensurate structures showed extremely low friction due to cancellation of the atomic force in the sliding direction, leading to smooth motion. On the other hand, in commensurate situations, all the atoms in the sliding part were overcoming the atoms in counterpart at the same time while the atomic forces were acted in the same direction, leading to 100 times larger friction than incommensurate situation. Thus, lubrication by MoS(2) strongly depended on its interlayer contacts in the atomic scale. According to part I of this paper [Onodera, T., et al. J. Phys. Chem. B 2009, 113, 16526-16536], interlayer sliding was source of friction reduction by MoS(2) and was originally derived by its material property (interlayer Coulombic interaction). In addition to this interlayer sliding, the rotational disorder was also important to achieve low friction state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp1064775DOI Listing

Publication Analysis

Top Keywords

friction
10
friction anisotropy
8
rotational disorder
8
0° 60°
8
low friction
8
direction leading
8
interlayer sliding
8
sliding
5
computational chemistry
4
chemistry study
4

Similar Publications

A functional integral approach to magnon mediated plasmon friction.

Sci Rep

January 2025

School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong, 675000, China.

In this paper, we discuss quantum friction in a system formed by two metallic surfaces separated by a ferromagnetic intermedium of a certain thickness. The internal degrees of freedom in the two metallic surfaces are assumed to be plasmons, while the excitations in the intermediate material are magnons, modeling plasmons coupled to magnons. During relative sliding, one surface moves uniformly parallel to the other, causing friction in the system.

View Article and Find Full Text PDF

Bearing characteristics and damage rules of regenerated rock mass.

Sci Rep

January 2025

Dazhu Coal and Electricity Group of Sichuan, Xiaohezui Coal Mine, Dazhou, 6635000, China.

This study investigates the bearing characteristics and damage evolution of regenerative rock masses formed under varying geological conditions through uniaxial loading tests, numerical simulations, and theoretical derivations. Regenerative rock mass samples with different water-cement ratios and cementing materials were prepared, and the mechanical behavior during the loading process was analyzed. The results indicate that the secondary damage process can be divided into three stages: pre-peak, weakening, and friction.

View Article and Find Full Text PDF

The role of fluid friction in streamer formation and biofilm growth.

NPJ Biofilms Microbiomes

January 2025

FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.

Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.

View Article and Find Full Text PDF

Lead azide (LA) is a widely utilized primary explosive, serving as the initiating charge in blasting caps or detonators to start the detonation process of secondary explosives. The toxicity and environmental concerns associated with LA have led to regulatory restrictions and increased scrutiny, prompting the search for lead-free alternatives. LA is highly sensitive toward heat, shock, or friction, which poses safety challenges during manufacturing, handling, and storage.

View Article and Find Full Text PDF

A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!